A Competitive Dynamic Data Replication Algorithm*

Yixiu Huang, Ouri Wolfson
Electrical Engineering and Computer Science Department
University of Illinois at Chicago

Abstract

In this paper, we present a distributed algorithm for
dynamic data replication of an object in a distribut-
ed system. The algorithm changes the replication
scheme, t.e., number of replicas and their location in
the distributed system, to optimize the amount of com-
munication. In other words, the algorithm dynamical-
ly adapts the replication scheme of an object to the
pattern of read-write requests in the distributed sys-
tem. We prove that the cost of the algorithm s within
a constant factor of the lower bound.

1. Introduction

1.1 Motivation

The replication scheme of a distributed system de-
termines how many replicas of each object are created,
and to which processors these replicas are allocated.
This scheme critically affects the performance of a dis-
tributed system, since reading an object locally is less
costly than reading it from a remote site, Therefore in
a read-intensive network a widely distributed replica-
tion is mandated. On the other hand, an update of
an object is usually written to all, or a majority of the
replicas, and therefore in a write-intensive network a
narrowly distributed replication is mandated. In oth-
er words, the optimal replication scheme depends on
the read-write pattern for each object.

Traditionally, in computer networks, objects are
replicated in a static fashion, i.e. the data replication
scheme 1s designed by the distributed-database man-
ager and 1t remains fixed until manual reallocation is
executed by the manager. If the read-write patterns
are fixed and are known a priori, this is a reasonable
solution. However, if the read-write patterns change
dynamically, in unpredictable ways, a static replica-
tion scheme may lead to severe performance problems.

*This research was supported partly by NSF grant IRI-90-
03341. — It appears in the Proceedings of the 9-th In-
tenational Conference on Data Engineering, pp. 310 -
317, April 1993, Vienna, Austria

In this paper we propose a practical algorithm,
called Competitive-Dynamic-Data-Replication (CD-
DR), that changes the replication scheme (i.e. the
sites which store a replica of the object) of an objec-
t dynamically as the read-write pattern of the object
changes in the network. We assume that the changes
in the read-write pattern are not known a priori.

The algorithm CDDR is based on the primary-copy
model, it preserves 1-copy-serializability, and it is dis-
tributed in the sense that the decision on whether or
not to store a copy of the object is made by each in-
dividual site based on locally collected statistics. The
algorithm changes the replication scheme of an object
to optimize a global cost function for the current read-
write pattern. As the read-write pattern changes, so
does the replication scheme. Specifically, if during a
period of time it is (communication-) cost effective for
some site to store a copy of the object (due to the
dominant cost of reads initiated locally), then it will
do so. When the site determines that, due to the dom-
inant cost of writes initiated at other processors, it is
not cost effective to retain the copy, then it will give
it up.

The CDDR algorithm is also integrated. In such an
algorithm, redistribution of the replicas is integrat-
ed into the processing of reads and writes, instead of
executing independently of these operations. So, for
example, a processor s creates a replica of an objec-
t at some other sites, 4, in response to i's request to
read the object from s. s creates the replica by piggy-
backing, on the message to ¢ containing a copy of the
object, an indication that ¢ should keep a replica (and
that s will propagate writes to 7).

We demonstrate the practicality of the algorith-
m by showing how it should be combined with the
concurrency control and recovery mechanisms of the
database management system.

One of the main and most difficult results of this
paper is to show that the CDDR algorithm is compet-
itive. Specifically, we show that for every schedule of
read-write requests to an object, our algorithm does
not do much worse than the lower bound. The lower

bound is the cost of an algorithm in which the requests
are totally ordered, the sequence of requests is known
a priori, and any decision to change the replication
scheme is done in a centralized fashion. Our algorith-
m is competitive in the sense that the ratio of its cost
to the lower bound is bounded by a constant.

1.2 Relevant literatures

Performance and reliability are the two major pur-
poses of data replication. This work addresses the
former.

Many performance-oriented works on replicated da-
ta consider the static problem of the replication, name-
ly establishing a priori a replication scheme that will
optimize performance, but will remain fixed at run-
time. This is called the file-allocation problem, and
it has been studied extensively in the literature (see
[11] and [12] for a survey). In contrast, our algorithm
does not keep the replication scheme constant during
runtime.

Another approach to improve the performance in a
replicated distributed database, which also assumes a
static replication scheme, is to relax the serializability
requirement. Works on quasi-copies ([13, 14, 15]), lazy
replication (in [16]), and bounded ignorance ([17]) fall
in this category. In contrast, our approach preserves
one-copy-serializability.

In the theoretical computer science community
there has been work on online algorithms (e.g. [1]),
particularly for paging (e.g. [18]), searching (e.g. [18])
and caching (e.g. [19]). These works are similar in
spirit to the CDDR, algorithm in the sense that they
address competitiveness. However, the models in such
works are inappropriate for managing replication in
distributed databases. For example, the replacement
issue (i.e. which page to replace), that is important
in paging, usually 1s not a factor in replicated data
management.

There has also been work addressing dynamic da-
ta replication algorithms in [20]. However the algo-
rithms there do not allow concurrent requests, and re-
quire centralized decision making by a processor that
is aware of all the requests in the network. In con-
trast, our algorithm is distributed, and allows concur-
rent read-write requests.

Finally, in [2] we proposed algorithms for dynamic
replication. However, these algorithms were depen-
dent on the network having the tree topology, a lim-
itation removed by the CDDR algorithm. In [3], we
proposed another dynamic replication algorithm that
was also independent of the of the network topology.
However, in contrast to CDDR, none of the algorithms
(in [2] and [3]) is competitive.

The rest of this paper 1s organized as follows. Sec-

tion 2 presents the primary-copy model, and the CD-
DR algorithm. Section 3 discusses practical issues re-
lated to the implementation of the algorithm. Section
4 analyzes the CDDR algorithm from the competitive-
ness point of view. Section b provides final comments
and discussed future work.

2. The CDDR algorithm

In this section we present the CDDR (Competitive
Dynamic Data Replication) algorithm.

We define an object to be a unit of data to be repli-
cated, and the replication scheme of the object to be
the set of sites which hold an object replica. A data
site 1s a site that belongs to the replication scheme.
A non data site is a site that does not belong to the
replication scheme. We suppose the read-write model
is the following (called here as the primary-copy mod-
el). At any point in time one of the data sites is desig-
nated as the primary site (we denote it by p). Initially
the replication scheme contains p alone. Whenever a
data site issues a read request for the object, it is ser-
viced locally. When a non-data site issues a read, the
request is forwarded to, and serviced by p. A site s
writes the object by sending it to p, and in turn p
propagates the write to all the available data sites. In
other words, the update policy is ‘read one write all
available 1,

Every site in the network has a status. Status 1
indicates that this site is a data site, status 0 means
that this site is a non data site. Every site knows
its own status and where the current primary site is.
The primary site knows every site’s status. We define
the r-write (remote write) of a site s to be the write
request issued from any other site (i.e. not from s) in
the network.

For every site s there are two associated counters,
based on which the status of s is determined. The first
is the read-counter, which counts the number of reads
s issued. The second counter is the r-write counter,
which counts the number of r-writes of site s.

The counters of a data site reside at the data site.
These counters can be maintained since the data site
knows how many reads it issues, and how many r-
writes the primary site propagates to it. All the coun-
ters of the non data sites reside at the primary site p.
These counters can be maintained at p, since p knows
how many reads a non data site issues, and how many
writes any site issues. Therefore, the primary site de-
cides for the non data sites whether or not they enter
the replication scheme, based on their counters.

Intuitively, these two counters establish the follow-
ing trade-off. A site s being in the replication scheme
increases the communication cost of every r-write, s-
ince it has to be propagated to s, and it decreases the

communication cost of every read from s. Observe
that whether or not s is in the replication scheme does
not affect the communication cost of a write from s,
nor does it affect the communication cost of a read
issued by a site other than s.

At the intuitive level, the replication scheme
changes as follows. If the primary site receives more
read requests from a non data site j, then it will tell 5
to enter the replication scheme; whereas if the primary
site receives more write requests from sites other than
j, then it will keep j out of the replication scheme.
The data sites decide by themselves whether or not to
exit from the replication scheme based on the counters
they have. If the data site ¢ issues more read requests,
then it will stay in the replication scheme, whereas if
¢ receives more r-write requests from the primary site,
then it will exit from the replication scheme. When the
primary site needs to exit from the replication scheme,
it has to choose a new site to inherit the primary role.

The following algorithm is the formal description of
how these counters are used for the dynamic replica-
tion and reallocation. The algorithm has a param-
eter k, which determines how frequently the replica-
tion scheme changes. In section 4.5, we will discuss
the tradeoffs in choosing k.

CDDR(k) Algorithm

1. After issuing a read request, a data site 7 in-
crements its read-counter by one. If #'s read-
counter reaches k, then ¢ remains in the repli-
cation scheme and initiates the following Reset
Action;

Reset Action: Reset the read-counter and the
r-write counter to 0.

2. Upon receiving a read from a non data site j, the
primary site p increments j’s read-counter by one.
If the read-counter reaches k, then p responds by
sending a copy of the object to j and tells j to en-
ter the replication scheme. Specifically, p initiates
the following Join Action for j;

Join Action: p changes site j’s status from 0 to
1, and it tells 5 to keep the copy and to ini-
tialize its own counters.

3. Upon receiving a propagated write from p, a
data site s, which is not the primary site (i.e.
s # p), does the following. s increments its 1-
write counter by one. If its r-write counter reach-
es k, then 1t exits from the replication scheme
and informs the primary site of this change, by
initiating the following Fzit Action;

Exit Action: Reset the status of s to 0, and tell
p to initialize the counters for s.

4. Upon receiving a write request from any site, p
propagates the write to every available data site,
and p increments by one the r-write counters
of the non-data sites. For each r-write counter
at p that reaches k, p initiates the Reset Ac-
tion (see above). Additionally, if the write re-
quest is not initiated from p, and p's own r-write
counter reaches k, then p exits from the repli-
cation scheme by initiating the following Switch
Action;

Switch Action:

(al) If currently there is another site in the repli-
cation scheme, then p chooses one, say s, to
inherit the primary role;

(a2) Otherwise p selects the sender of the write
request, say s, to inherit the primary role,
and p initiates the Join Action for s;

(b) Reset the status of p to 0, and tell s to ini-
tialize the counters for p;

(¢) psends to s the counters and statuses it kept;

(d) p broadcasts a message to every site in the
network, indicating that s becomes the new
primary site.

We define an Action for a site s to be either an Ezit,
or a Reset, or a Join, or a Switch. The following exam-
ple demonstrates the algorithm CDDR(k) for (k=2).

Example 1: Suppose the network consists of three
sites {1, 2, 3 }. Initially there is a single replica of the
object residing at site 1. The communication struc-
ture is as shown in Fig. 1 (the dark round site indi-
cates the primary site, a dark box site means a data
site, a light box site means a non data site). The re-
quest sequence is ririrwiriwirirdw)ri®wil where
the superscript indicates the order of the request in
the sequence, and the subscript tells at which site
the request is initiated. For example, 7§ means that
the eighth request is a read issued from site 3, w}

means that the fourth request is a write from site 1.

2 1 3
[® L]
Figure 1.

To start the CDDR(2) algorithm, we initialize site
1’s status to 1, the others’ status to 0, and all sites’
counters to 0 at site 1. The table below indicates
the sites’ status (shadow means a site currently in the
replication scheme) after each request, the values of
the read-counter (above the slash line) and the r-write
counter (below the slash line) after each request.

After request 1, site 1’s read-counter becomes 1; Af-
ter request 2, site 3’s read-counter becomes 1; After
request 3, site 2’s read-counter becomes 1; After re-
quest 4, the r-write counters of site 2 and site 3 be-
come 1; Request b makes site 3’s read-counter reach
k = 2, site 1 (the primary site) initiates the Join Ac-
tion for site 3, 3 becomes a new data site, and its two
counters are both initialized at site 3; The communi-
cation structure is shown in Fig. 2. After request 6,
site 1’s r-write counter becomes 1. Request 6 makes
site 2’s r-write counter reach & = 2, hence the primary
site (site 1) initiates the Reset Action for site 2, and
site 2’s counters are thus becoming 0’s. After request
7, site 2’s read-counter becomes 1; After request 8,
site 3’s read-counter becomes 1; After request 9, site
3’s r-write counter becomes 1, and request 9 makes
site 1’s r-write counter reach & = 2, hence site 1 (the
primary site) initiates a Switch Action for itself, its
primary role is switched to site 3 (the other current
data site), and 1’s own counters are both cleared to
0’s. The communication structure is shown in Fig. 3.

ead 1 2 3 4 5 6 7 8 9 10 11
o L L Y A Y L L L
ster |9 O O D O N N N O D0
ste2 | OO NI ONL NI AN [N N ONE N o 3NE
AN NG PN T N DG P N N N N N

2 1 3 2 3 1

O0—eo—H O—e—U

Figure 2. Figure 3.

After request 10, site 1’s read-counter becomes 1;
After request 11, site 2’s r-write counter becomes 1,
and this request makes site 3’s r-write counter reach
k = 2. Site 3 initiates a Switch Action to switch the
primary role from site 3 to site 1 (the writer, a non
data site). The communication structure becomes the
same as in Fig. 1. ad

3. Practical issues

In this section we discuss how the C'DDR algorith-
m is implemented in a distributed environment. We
address the issues of concurrent read-write requests
issued by different transactions, performance consid-
erations, and coping with failures.

3.1 Concurrency control

In this subsection we show how the CDDR algorith-
m can be combined with distributed two-phase locking
6]

to preserve one-copy serializability (1.
The concurrency control can be performed as fol-

lows. Each write request exclusively locks (x-lock) all
available copies of the object, and each read request s-
locks (shared lock) the primary copy, or the local copy,
depending on the site that performs the read request.
A transaction which accesses the object is executed
as follows. Every site executes the CDDR algorithm
(i.e. servicing the request, initiating the Actions to
change the replication scheme, and sending messages
as required) between the lock and the unlock of the
object.

The ‘read one write all’ protocol preserves the one-
copy serializability (see [8], [9] and [10]). Although
the meaning of ‘all’ in our context changes dynamical-
ly, the replication scheme change happens while the
transaction is holding the lock(s), thus each transac-
tion has a fixed view of the replication scheme before it
starts, and this replication scheme can not be changed
by other transactions during its execution. Therefore
one-copy serializability is preserved as in the case of
static replication.

3.2 Other performance issues

In this subsection we deal with some special perfor-
mance issues raised by switching the primary site.

Because the primary role may switch from one site
to another, a site s may send a service request to the
primary site before s receives the primary-site-switch
information. If s receives the primary site switch mes-
sage before the request is serviced, then s re-sends the
request to the new primary site. If an off-switched
primary site s receives a request directed to a primary
site, then s ignores the request.

In the CDDR algorithm, a write request may cause
several Erzit and Reset Actions for different sites as
part of the transaction. If a Swiich is to occur as
a result of this write, then, for performance reasons,
all these Actions should complete before the Swiich.
Otherwise, the status of a data site may have to be
transmitted twice from the off-switched primary site
to the new primary site.

When the primary site p initiates a Join Action for
a non data site j, it sends a join message to j. This
indication is piggybacked on the copy of the object
sent to j.

When a propagated write results in an Fzit Action
of a data site ¢, ¢ will send an exit message to p. This
indication 1s also piggybacked, this time on the write
acknowledgment to p.

3.3 Failure and recovery

In this subsection we discuss how the C DDR algo-
rithm copes with failures. We suppose here that all
failures are clean[5], i.e. the failure can be detected
and a failed site is totally down. A site failure may
occur at the non data site, non-primary data site or

at the primary site. Each one of these cases is treated
differently.

A non data site’s failure does not affect the execu-
tion of read and write requests at the other sites. The
primary site may not know that the site has failed.

If a non-primary data site ¢ fails, any x-lock request-
ed by the primary site p (due to a write request) will
not be acknowledged. If p does not get any response
from a data site ¢ to the x-lock request, then p as-
sumes that ¢ has failed. Then p sets ¢'s status to 0,
and continues.

If the primary site fails, any read request submit-
ted from non data site can not be serviced (the s-lock
requested is not acknowledged), and the write request
submitted from any site is not acknowledged. If a site
does not get an acknowledgment from p, it assumes
that p has failed. All sites, except the primary, will
execute an election protocol to select some data site
as the new primary site.

Since the number of copies of the object varies in
time, the dynamic replication and allocation algorith-
m is vulnerable to failures that may render the ob-
ject inaccessible. To address this problem, the user
may impose reliability constraints of the following for-
m: “The number of copies cannot decrease below a
threshold, say ¢.” If such constraint is present, then
the primary site p refuses to accept the exit of a data
site, if such exit will downsize the replication scheme
below the threshold. In other words, p informs the site
s that the request to exit from the replication scheme
is denied; subsequently, writes continue to be propa-
gated to s. s continues to reissue the request whenev-
er the exit comparison dictates to do so. The request
may be granted later on, if the replication scheme ex-
panded in the meantime.

When a site s recovers from failure, the recovery
procedure will send a recovering message to every site
in the network. Only the primary site p responds to
this message. The other sites ignore this message. Up-
on receiving this message, p assumes that s is a non
data site, resets its status to 0, and initializes its two
counters.

4. Analysis of the CDDR algorithm

In this section, we formulate the cost objective func-
tion, and we show that CDDR(k) is 2k-competitive.
Also we discuss the strategy of choosing k.

4.1 Request schedules

A finite sequence of read-write requests of the objec-
t, ¥ = 010203...0,, will be called a schedule. We denote
the consecutive reads of ¥ between its i*® write and
its (i + 1)** write by R(), and the consecutive reads
before the first write by R(®). Thus for convenience,

we sometime denote the schedule by
= ROw RWw? . w?RM)

where w' is a single write request, R is zero or more
read requests.

Actually, in practice, the read requests in R(*) may
be partially ordered. Although in the proof we assume
that the read requests in R(Y) happen sequentially, the
proof still holds even if the reads are partially ordered.

4.2 Cost function

We suppose that the communication cost of moving
the object between two sites is 1. Therefore if the
replication scheme consists of sites {1,2,3}, and site 4
reads the object, then the communication cost is 1. If
site 4 writes the object, then the communication cost
is 3.

For any schedule ¥ = 0105 ...0,, we define its Con-
figured Schedule to be a request-scheme sequence

X001X102X2 . .Oan

where X; is the replication scheme after the i** re-
quest (we call X; the associated replication scheme of
0;), and Xy is the replication scheme before the first
request of the schedule.

An offline dynamic replication algorithm is one
which knows the whole request schedule in advance,
and maps the schedule to a configured schedule before
the execution. It can configure the optimal schedule
for different cost functions.

An online dynamic replication algorithm does not
have knowledge of the whole schedule, it changes the
replication scheme based on the prefix received. Upon
receiving a request o;, an online dynamic replication
algorithm (say algorithm A) configures the next repli-
cation scheme X; based on the preceding configured
schedule and the current request o;. In other words,
the algorithm A configures the associated replication
scheme of a request immediately after the request is is-
sued, and before the next request is issued. For a read
request, we define its incurred communication cost to
be the most efficient way to replicate the most up-
to-date copies in the set X;_; to the set X;, and to
service the request. For a write request, we define its
incurred communication cost to be the cost to real-
locate the most up-to-date copy (held by the writer)
to the set X;. This will become clear in the next ex-
ample. For the schedule ¥ = 0105...0,, we define the
incurred cost of algorithm A for schedule 1, denoted
COSTA(¢) to be the sum of all the communication
costs incurred in each request.

4.3 Competitiveness

After formulating the cost function of a dynamic
replication algorithm for an arbitrary schedule, we can
define the notion of competitiveness. Competitiveness

is a widely-accepted way to measure the performance
of an on-line algorithm (see [1, 4]). Intuitively, a c-
competitive online dynamic replication algorithm is
an algorithm which costs at most ¢ times as much
as any other (online or offline) dynamic replication
algorithm, for any schedule. Formally, a c-competitive
dynamic replication algorithm P is one for which there
are two constants ¢ and d, such that for any request
sequence ¢, COSTp(¢) < ¢-COST4(¢)+d, where A
can be any on-line or off-line algorithm. It bounds the
worst case cost to be within a constant factor of the
optimal algorithm. We will show that the algorithm
CDDR(k) is 2k-competitive.

4.4 Request constraint

We analyze the CDDR algorithm for transactions
that obey the following constraint.

NBW Constraint ‘no blind write’ is allowed, 1.e.,
a transaction can have at most one write for an
object, and each write must have at least one ref-
erencing read i.e. a read for the same object that
occurs before the write.

This constraint is practically reasonable since one does
not usually change the value of an object without read-
ing the object beforehand.

The NBW constraint, combined with a concurrency
control mechanism that guarantees one-copy serializ-
ability ([6] and [7]) (e.g. two-phase locking), ensures
the following. In a schedule, for any object O, be-
tween any two writes of O there is at least one read
of O. The reason for this is that any write (say from
transaction 77) that occurs between a write (say from
transaction 75) and one of its referencing reads (from
transaction T5) will violate serializability.

4.5 The main analysis result
Our main analysis result is the following.

Theorem: If each transaction is NBW-constrained
and each schedule 1s 1-copy-serializable, then
CDDR(k) is 2k-competitive.

The complete proof of the above theorem is omit-
ted because of space limitations. Intuitively, the proof
proceeds in three steps. First, we devise the low-
er bound on the communication cost. Second, we
show that C DDR(1) is 2-competitive under constraint
NBW , by comparing it to the lower bound. Third, we
show that when using CDDR(k) the cost is at most
k times as much as that of using CDDR(1). These
three steps combined prove the theorem.

A question that arises at this point is why not use
k = 1 for maximum competitiveness. The answer is
that in this paper, we did not consider the cost of
control messages, such as the broadcast notifying all

sites of the primary site switch. We only considered
the communication cost of transmitting the replicated
object, since we assume that the object is much larger
than a control message.

However, the control messages cost may become sig-
nificant when k is small, since a lower k increases the
probability of a primary site switch. At the extreme,
when k = 1, every write causes a switch if the write is
not initiated at the primary site. By choosing a larger
k, the replication scheme will be more stable and the
communication cost of control messages will be rela-
tively small, while the CDDR, algorithm will still be
competitive.

5. Conclusion and future work

We have presented a practical algorithm for dynam-
ic data replication, and we described how it is im-
plemented in a distributed fashion. Additionally, we
proved an important theoretical result stating that the
CDDR algorithm is competitive, i.e.; its cost is within
a constant factor of the lower bound.

The CDDR algorithm adapts the replication scheme
to changing read-write patterns. For example, if for a
period of time, the only access to an object o in the
distributed system consists of reads and writes from a
particular site s, then the CDDR algorithm will move
the replication scheme of o to include s only. In con-
trast, if for a period of time, all the sites in the dis-
tributed system issue only reads (and not writes) of o,
then the CDDR algorithm will change the replication
scheme of o to include all the sites in the distribut-
ed system. It is important to note that these changes
occur in a distributed fashion, as a result of statistics
collected locally at each site.

The algorithm is based on two techniques. One is
the existence of a primary copy (or site), and the sec-
ond is the ‘read one write all available’ method.

The CDDR algorithm is performed for each logi-
cal object independently of any other logical object.
In other words, different objects may have different
replication schemes and different primary sites.

We conjecture that the CDDR algorithm has the
following property. When the read-write pattern be-
comes regular (e.g., site 1 issues 2 reads and 1 write
per time unit, site 2 issues 3 reads and 2 writes per
time unit, etc.), then the replication scheme becomes
fixed, and the fixed replication scheme is optimal for
the read-write pattern. This is a different (than com-
petitiveness) measure of performance for a dynamic
replication algorithm, and it was used in [2]. We in-
tend to prove this conjecture.

This CDDR algorithm has not taken the I/O cost
of data replication into account. However we have
developed a competitive algorithm that optimizes a

cost function which combines both the I/O and the
communication cost. This algorithm is beyond the
scope of this paper.

References

[1] M. Manasse, L.A. McGeoch, and D.Sleator, Com-
petitive algorithms for online problems, Proc.

20th ACM STOC, page 322-333, ACM 1988

[2] Ouri Wolfson and Sushil Jajodia, Distributed Al-
gorithms for Dynamic Replication of Data, Proc.
of ACM-PODS, 1992

[3] Ouri Wolfson and Sushil Jajodia, An Algorithm
for Dynamic Data Distribution, Proceedings of

WMRD, 1992

[4] A. Fiat, R, Karp, M.Luby, L.A. McGeoch,
D.Sleator, N.E. Yong, Competitive paging algo-
rithms, Journal of Algorithms, 12, pages 685-699,
1991

[6] N. Goodman, D. Skeen, A. Chan, U.Dayal, S.
Fox, D. Ries, A recovery algorithm for a distribut-
ed database system, Proc. 2nd ACM SIGACT-
SIGMOD, Symp. Database System, Atlanta, GA,
March 1983, pp 8-15

[6] P. Bernstein, V. Hadzilacos, and N. Goodman,
Concurrency control and recovery in database

systems, Addison-Wesley (1987)

[7] C. Papadimitriou, The serializabilily of concur-
rent updates, Journal of the ACM, 26(4), pp. 631-
653

[8] Michael J. Carey, and Miron Livny, Distribut-
ed concurrency control performance: A study of
algorithms, distribution and replication, Proc. of

the 14th VLDB Conf. Los Angeles, CA, 1988

[9] Hector Garcia-Molina, and Robert K. Abbot-
t, Reliable distributed management, Proc. of the
IEEE, Vol. 75, NO. 5, May 1987

[10] P.A. Bernstein, and N. Goodman, An algorithm
for concurrency control and recovery in replicated
distributed databases;, ACM-TODS, Vol. 9, No. 4,
December 1984, Pages 596-615

[11] O. Wolfson and A. Milo, The Multicast Policy
and Its Relationship to Replicated Data Place-
ment, ACM TODS, 16 (1), 1991.

[12] L. W. Dowdy and D. V. Foster, Comparalive
Models of the File Assignment Problem, ACM
Computing Surveys, 14 (2), 1982.

[13] R. Alonso, D. Barbara, H. Garcia Molina, Quasi-
copies: Efficient data sharing for information re-
trieval systems, Proc. of EDBT’88, LNCS 303,
Springer Verlag.

[14] R. Alonso, D. Barbara, H. Garcia Molina, Dala
caching issues in an information retrieval system,

ACM TODS, 15 (3), 1990.

[15] D. Barbara, H. Garcia Molina, The case for con-
trolled inconsistency in replicated data, Proc. of
the IEEE workshop on replicated data, 1990.

[16] R. Ladin, B. Liskov, L. Shrira, A technique for
constructing highly available distributed services,

Algorithmica 3, 1988.

[17] N. Krishnakumar and A. Bernstein, Bounded ig-
norance wn replicated systems, Proc. of ACM-

PODS "91.

[18] D. Sleator and R. Tarjan, Amortized Efficiency
of List Update and Paging Rules, CACM 28(2),
1985.

[19] A. Karlin, M. Manasse, L. Rudolph, D. Sleator,
Competitive Snoopy Caching, Algorithmica, 3 (1),
1988.

[20] Y. Bartal, A. Fiat, Y. Rabani, Competitive Al-
gorithms for Distributed Data Management, 24th
Annual ACM STOC, 5/92, Victoria, B.C. Cana-
da.

APPENDIX: Proof of the Theorem

A.1 Lower Bound

We will firstly show the following LB algorithm is
the lower bound for an arbitrary schedule. Then we
use LB as a yardstick to measure the competitiveness
of other algorithms.

Intuitively, LB performs as follows. For every read,
LB reads from one copy, while for a write it does
not write to every available current copies, instead
it changes the replication scheme to a singleton and
writes to the new replication scheme.

LB Algorithm

1. For each write request, the replication scheme
shrinks to the singleton consisting of the writing
site alone;

2. For each read request, it reads locally if it is
in the replication scheme; otherwise it reads from
the most recent writer, the replication scheme is
then expanded to include this reader.

The following example demonstrates the LB algo-
rithm.

Example 2: Suppose the network consists of three
sites {1, 2, 3 }. Initially there is a single replica of
the object residing at site 1. The request schedule is
rirZwiry, where the superscripts and the subscripts
have the same meaning as in Example 1. Then by
using LB the replication scheme changes as follows.

After request 1, site 2 joins the replication scheme,
which costs 1; After request 2, site 3 joins the replica-
tion scheme, which costs 1, and the replication scheme
consists of all sites; After request 3, the replication
scheme shrinks to consist of site 3 (the writer) alone,
site 1 and 2 exit, with 0 cost; After request 4, the
replication scheme expands to include site 1 (the read-
er), which costs 1. i.e., the configured schedule is {1}
ri{l,2} r3{1,2,3} w3{3} r}{1,3}, and the total cost
is 3. a

We will show the algorithm LB is the best dynamic
replication in this model for any request schedule as
the following lemma 1.

Lemma 1: LB is cost-optimal.
Proof: Suppose the schedule is
¥ = ROw! RWw? . w?RM™)

We denote the schedule of the form w’ R by o;. Since
the incurred communication cost of this schedule for
algorithm A is the sum of all the costs incurred by
each request, thus

n
COSTa(¢) = COSTA(R™)+ > COSTa(0:)
i=1
For requests R(®), LB costs the number of distinct
readers of R(®) which are not in the replication scheme.
That is obviously the most economic cost among all
dynamic replication algorithms.

Thus it suffices to show that for each o;, the incurred
communication cost for LB is also optimal.

Assume o = wqgrirs...r;, where the subscripts de-
notes the site from which the write request w or read
request r 1s issued. Then we need only to consider the
schedule of the form o. Let the request sequence o
together with the associated replication schemes be as
follows

o = w()Xo?“le...?“ka

where wg 1s the write request issued by site 0, X
is the associated replication scheme after this write
request, r; 1s the read request issued by 7 and X; is
the associated replication scheme with this read. We
assume that there are x distinct sites in the (k + 1)
readers/writer.

In this varying replication scheme sequence, the ob-
ject traverses from the writer 0 to the set Xy, from

Xo to {ri} U Xy, from {r1} UX; to {r:} U X, and
so on. Finally the edges used will connect all the
sites in Y = {0,1,...,k}, and all the sites in X; for
0 < ¢ < k. Hence these edges will form a connected
(possibly multi-edged) subgraph say H. Let H' be the
graph obtained from H by simply deleting all the mul-
tiple edges. Then H’ is obviously a subgraph of the
whole network GG, and H' has at least @ — 1 edges since
it connects « sites. Therefore the lower bound of the
cost incurred for ¢ is # — 1 using any algorithm A. We
can see easily that the algorithm LB will cost exactly
x — 1 for o, hence LB is cost-optimal. a

A.2 Competitiveness of CDDR(1)

Lemma 2: CDDR(1) is 2-competitive under the con-
straint N BW.

Proof: Consider the request schedule
= ROw RWw? . w?RM)

We know each read will simply expand the replica-
tion scheme to include the reader with the cost 1 (if
the reader was not in R), and each write will simply
write to every replica including the replica the writer is
holding (the writer must had a priori read before this
write and after any other write due to the NBW con-
straint) and then the others will exit, with the write
cost (#-of replicas — 1). Then we see the cost for
R® is the number of distinct readers other than the
preceding writer in this sequence. The (i+1)%" writer
is in R due to the NBW constraint, hence this write
will cost at most (14+number of distinct readers other
than the preceding writer in R(*) — 1), where the first
1 is for the preceding writer. Therefore w't! costs
at most as much as R() does. We see that R() will
produce the same cost using CDDR(1) as using LB,
hence CDDR(1) produces at most twice as much cost
as LB does. i.e. CDDR(1) is 2-competitive. a

A.3 Re-formulating the Cost Function

In order to prove this theorem, we introduce the
following notation and analyze the cost incurred in
the request sequence ¢ for an algorithm A where
A executes the ‘Read One Write All’ protocol. Let

the request sequence be ¥ = ol 0% ...0™ where

51055045
s; is the site from which the request of is is-
sued. For algorithm A, let the configured schedule

is R%oileoi...Rx_lonRT. We define

0 oél is aread, s; € RfA_l

o 1 oy, is aread, s; ¢ RZl
! IR =1 ol isawrite, s; € Ry
i-1 it . , i-1

|R 0y, is a write, s; € R,

to be the cost of request oil. The total incurred cost

m

of ¢ for A'is COST4(¢) =D e;.

For each site s, we deﬁneZ tllle assoclated status se-
quence of algorithm A for + is tjol t502 ..o 15, We
define the p-cost of a site s for the request of, of the
algorithm A as follows

0 of isaread, s; #s
0 o) isaread, s; =s,t{_; =1
PR L s _
(4) = 1 o isaread, s =s,1{_; =0
P =0 0 ol i ite, t2_, = 0
0y, is a write, t{_; =
0 of isawrite, t;_ ;=15 =5
o' 1sawrlte, ti_, =15, #s
I te, t7_, = 1,

1.e. the p-cost of site s for the request Oi, is one only if
(1) s is not in the replication scheme and Oi, is a read
from s or (2) s is in the replication scheme and oél 1s
an r-write of s. Otherwise its p-cost is zero. For the

site s, the total p-cost is PCs(A4) = pr(A) Notice
=1

that the p-cost of a site s depends on its own status
and the request, it has nothing to do with the data

replication scheme. Assume N is the number of sites
N

in the network, then ¢; = pr The total incurred
s=1

cost of ¥ for A 1s

COSTA(Y) = Z ¢ = Z > o

s=14¢=1 s=1
To prove the theorem, we compare the p-cost of each
site s for CDDR(k) with that for CDDR(1). we
are going to show that the p-cost of each site for
CDDR(k) is at most k times as much as that for
CDDR(1), thus to conclude the theorem.

Assume by CDDR(k), the site s’s status will be re-
set n times as t1,%s,...,1,, the request sequence ¥ is
to be split by these statuses as subsequences as

tovot1tr.. it iy

where ¢y 1s the initial status of the site s before the
request sequence tg. We define this sequence to
be the action-status sequence of site s, and each ;
(0 < i< n)is called a subsequence of the action-status
sequence. P = oip1...10, and inside each subsequence
1; no Action of site s is taken. Then we have the fol-
lowing lemmas:

A.4 Auxiliary Results

Lemma 3: Given a sequence ¢, by using CDDR(k)

algorithm the site s’s action-status sequence is
tovot1tr.. it iy

Then using algorithm C'DDR(1), site s’s status will

be t;41 after request sequence v; as using C DDR(k)

under constraint NBW.

Proof: Assume the last request in v; is ¢. This ¢
causes some Action of site s be taken, If this ¢ 1s a
read from s, the Action can only be a Join if s was
not in the replication scheme, or a Reset if s was. If ¢
is an r-write of s, the Action can be either a Reset if s
was not in the replication scheme, or an Fzit if s was.
If ¢ 1s a write from s, the Action can only be a Switch
no matter s was in the replication scheme or not. g¢
can not be a read from other site since other site’s
read request will not cause s’s status reset. Thus we
can verify this lemma in only in the following cases.

Case 1. q is a read from s, and s is a non data
site, i.e. #; = 0. Then ¢;41 is set by the Join Action
of CDDR(k), hence equals 1. Using CDDR(1), the
status of s after its read is obviously one.

Case 2. q 1s a read from s, and s is a data site,
ie. t; = 1. Then ¢;41 is set by the Reset Action
of CDDR(k), hence equals 1. Using CDDR(1), the
status of s after ¢ is 1 too.

Case 3: ¢ is an r-write of s, and s is a non data site,

e. t; = 0. Then the primary site must have detected
k r-writes and take the Reset Action of CDDR(k),
hence t;11 = 0. Using CDDR(1), every site (except
the writer) will exit from the replication scheme, thus
after ¢, s is not in the replication scheme either.

Case 4: q 1s an r-write of s, and s 1s a data site, i.e.
t; = 1. Then s detects that it has & r-writes already
and takes the Ezit Action (or Switch Action if s is
the primary site). Hence ;11 = 0. Using CDDR(1),
s will not be in the replication scheme either after
request q.

Case 5. q 1s a write from s, s becomes the new
primary site by the Switch Action taken by the old
primary site, then ;4,1 = 1. By the constraint NBW
we know that before this ¢, site s must have issued a
read r for the priori reference, and between the r and
this ¢ there is no other write request, which means
if we use CDDR(1), site s will join the replication
scheme after request » and won’t exit through request
q. Therefore s will be in the replication scheme after
request q. O

From this lemma we see that for any sequence 1, we
can divide it into subsequences of the action-status se-
quence by using CDDR(k). And at the beginning of
each such subsequence ;, CDDR(k) will set the site
s in the same status as CDDR(1) does. Suppose in t;
there are a; r-writes, b; reads. In the following lemmas,
we are going to compare the p-cost of the subsequence
of the action-status sequence between CDDR(k) and
CDDR(1).

Lemma 4: Let i; be a subsequence of the action-
status sequence fgtoty...tp, of site s by using

CDDR(k) (i # n). If t; = t;y1 = 0, then for ¢y,
PC(CDDR(k)) < k- PCy(CDDR(1)) under con-
straint NBW.

Proof: Upon finishing the request sequence ; us-
ing CDDR(k), the Action taken to site s must be a
Reset. Assume 1); has a; r-writes and b; reads from
s, then a; = k, and b; < k. PC,(CDDR(k)) = b;.
If b; = 0, PCs(CDDR(k)) = PCs(CDDR(1)) = 0,
the lemma follows. If &; # 0, then the first read of
s in 1, cost one using CDDR(1) since the site s is
not in the replication scheme before t; by lemma 2.
Hence PC(CDDR(k)) < k < k-PCy,(CDDR(1)) un-
der constraint NBW. a

Lemma 5: Let i; be a subsequence of the action-
status sequence tototy...tp, of site s by using
CDDR(k) (i # n). If t; = t;y1 = 1, then for ¢y,
PC(CDDR(k)) < k- PCy(CDDR(1)) under con-
straint NBW.

Proof: Upon finishing the request sequence ; us-
ing CDDR(k), the Action taken to site s must be a
Reset. Assume 1); has a; r-writes and b; reads from
s, then b; = k, and a; < k. PC,(CDDR(k)) = a;.
If a; = 0, the lemma is obviously true. If a; # 0,
by lemma 3 we see that the first r-write among a;
r-writes of ¢; costs 1 by using CDDR(1). Hence
PC{(CDDR(k)) < k <k -PC,(CDDR(1)). DO

Lemma 6: Let 1; be a subsequence of the action-
status sequence tototy...tp, of site s by using
CDDR(k) (i # n). Ift; = 0,441 = 1, then for
¢y, PCs(CDDR(k)) < k-PCy(CDDR(1)) under con-
straint NBW.

Proof: Upon finishing the request sequence ¥; using
CDDR(k), the Action taken to site s must be either
a Join or a Switch. Denote the last request of ¢; by q.

If the Action is a Join, ¢ must be a read from s. In
this case, there are k such reads in v;, and before v; s
is not in the replication scheme using either C DD R(k)
or CDDR(1) by lemma 3. We see the p-cost of site
s for ¢y is exactly k using CDDR(k). The p-cost of
using CDDR(1) is at least one, since the the first read
will cost that much. The lemma follows.

If the Action 1s a Switch, ¢ must be a write from
s, and s is the new primary site and 1t is not in the
replication scheme before ;. Then s must have is-
sued a read in ¢; due to constraint NBW and the
request immediately preceding ; must be either an
r-write request of s or no request (if ¢ = 0). We see
that the incurred p-cost of s in 4; is less than &k us-
ing CDDR(k), while the incurred cost of s is at least
one for that read using C DD R(1). This completes the
proof of this lemma. O

Lemma 7: Let i; be a subsequence of the action-

10

status sequence fgtoty...tp, of site s by using
CDDR(k) (i # n). Ift; = 1,t;41 = 0, then for
¢y, PCs(CDDR(k)) < k- PCs(CDDR(1)) under con-
straint NBW.

Proof: The last request ¢ of ¢; must be an r-write of
s. In this case, there must be k r-writes of s in v;, and
s is in the replication scheme using either CDDR(k)
or CDDR(1) before ¢; by lemma 3. We see the p-cost
of site s for ¢; is exactly k using CDDR(k), while the
p-cost of that using CDDR(1) is at least one for the
first r-write. The lemma follows. ad

Lemma 8: Let ¢, be the last subsequence of the
action-status sequence tgipoty..t,1, of site s by us-
ing CDDR(k). Then for ¢,, PC;(CDDR(k)) <
k- PCs(CDDR(1)) under constraint NBW.

Proof: Assume that i, has a r-writes and b reads.
Since no Action is taken upon finishing v, we have
a < k,b < k. The status of site s before 1, is ¢,.

Case I: t, = 0. For ¢,, PCs(CDDR(k)) = b. If
b = 0, the lemma is obviously true. If & # 0, the first
read among b reads costs 1 using C DDR(1) since site
s 18 not in the replication scheme before ¥,, by lemma
3. The lemma follows.

Case 2: t, = 1. For ¢, PCs;(CDDR(k)) = a. If
a = 0, the lemma is obviously true. If a # 0, the first
r-write among a r-writes costs one using CDDR(1)
since site s 1s in the replication scheme before ¥, by
lemma 3. This completes the proof of the lemma. O

A.5 Proof of the Theorem

Proof of Theorem: Assume by using CDDR(k) al-
gorithm the site s's action-status sequence is
tovot1tr.. it . Ity
For each subsequence ¢ (0 < ¢ < n), we see from
lemma 4, 5, 6, 7, and 8 that the p-cost of site s satis-
fies
PC{(CDDR(k)) < k-PC,(CDDR(1))

therefore for the whole sequence 1, the p-cost satisfies
PC(CDDR(k)) < k-PCs(CDDR(1)). Therefore the

total incurred cost satisfies

COSTeppray(¥) =Y PC(CDDR(k)) <

s=1

N
> k- PC(CDDR(1)) = k - COSTeppr) (1)
s=1
From lemma 8, we know CDDR(1) is 2-competitive
under constraint NBW, thus CDDR(k) is 2k-

competitive under constraint N BW. a

