
A Competitive Dynamic Data Replication Algorithm�Yixiu Huang, Ouri WolfsonElectrical Engineering and Computer Science DepartmentUniversity of Illinois at ChicagoAbstractIn this paper, we present a distributed algorithm fordynamic data replication of an object in a distribut-ed system. The algorithm changes the replicationscheme, i.e., number of replicas and their location inthe distributed system, to optimize the amount of com-munication. In other words, the algorithm dynamical-ly adapts the replication scheme of an object to thepattern of read-write requests in the distributed sys-tem. We prove that the cost of the algorithm is withina constant factor of the lower bound.1. Introduction1.1 MotivationThe replication scheme of a distributed system de-termines how many replicas of each object are created,and to which processors these replicas are allocated.This scheme critically a�ects the performance of a dis-tributed system, since reading an object locally is lesscostly than reading it from a remote site, Therefore ina read-intensive network a widely distributed replica-tion is mandated. On the other hand, an update ofan object is usually written to all, or a majority of thereplicas, and therefore in a write-intensive network anarrowly distributed replication is mandated. In oth-er words, the optimal replication scheme depends onthe read-write pattern for each object.Traditionally, in computer networks, objects arereplicated in a static fashion, i.e. the data replicationscheme is designed by the distributed-database man-ager and it remains �xed until manual reallocation isexecuted by the manager. If the read-write patternsare �xed and are known a priori, this is a reasonablesolution. However, if the read-write patterns changedynamically, in unpredictable ways, a static replica-tion scheme may lead to severe performance problems.�This research was supported partly by NSF grant IRI-90-03341. { It appears in the Proceedings of the 9-th In-tenational Conference on Data Engineering, pp. 310 -317, April 1993, Vienna, Austria

In this paper we propose a practical algorithm,called Competitive-Dynamic-Data-Replication (CD-DR), that changes the replication scheme (i.e. thesites which store a replica of the object) of an objec-t dynamically as the read-write pattern of the objectchanges in the network. We assume that the changesin the read-write pattern are not known a priori.The algorithm CDDR is based on the primary-copymodel, it preserves 1-copy-serializability, and it is dis-tributed in the sense that the decision on whether ornot to store a copy of the object is made by each in-dividual site based on locally collected statistics. Thealgorithm changes the replication scheme of an objectto optimize a global cost function for the current read-write pattern. As the read-write pattern changes, sodoes the replication scheme. Speci�cally, if during aperiod of time it is (communication-) cost e�ective forsome site to store a copy of the object (due to thedominant cost of reads initiated locally), then it willdo so. When the site determines that, due to the dom-inant cost of writes initiated at other processors, it isnot cost e�ective to retain the copy, then it will giveit up.The CDDR algorithm is also integrated. In such analgorithm, redistribution of the replicas is integrat-ed into the processing of reads and writes, instead ofexecuting independently of these operations. So, forexample, a processor s creates a replica of an objec-t at some other sites, i, in response to i0s request toread the object from s. s creates the replica by piggy-backing, on the message to i containing a copy of theobject, an indication that i should keep a replica (andthat s will propagate writes to i).We demonstrate the practicality of the algorith-m by showing how it should be combined with theconcurrency control and recovery mechanisms of thedatabase management system.One of the main and most di�cult results of thispaper is to show that the CDDR algorithm is compet-itive. Speci�cally, we show that for every schedule ofread-write requests to an object, our algorithm doesnot do much worse than the lower bound. The lower1

bound is the cost of an algorithm in which the requestsare totally ordered, the sequence of requests is knowna priori, and any decision to change the replicationscheme is done in a centralized fashion. Our algorith-m is competitive in the sense that the ratio of its costto the lower bound is bounded by a constant.1.2 Relevant literaturesPerformance and reliability are the two major pur-poses of data replication. This work addresses theformer.Many performance-oriented works on replicated da-ta consider the static problem of the replication, name-ly establishing a priori a replication scheme that willoptimize performance, but will remain �xed at run-time. This is called the �le-allocation problem, andit has been studied extensively in the literature (see[11] and [12] for a survey). In contrast, our algorithmdoes not keep the replication scheme constant duringruntime.Another approach to improve the performance in areplicated distributed database, which also assumes astatic replication scheme, is to relax the serializabilityrequirement. Works on quasi-copies ([13, 14, 15]), lazyreplication (in [16]), and bounded ignorance ([17]) fallin this category. In contrast, our approach preservesone-copy-serializability.In the theoretical computer science communitythere has been work on online algorithms (e.g. [1]),particularly for paging (e.g. [18]), searching (e.g. [18])and caching (e.g. [19]). These works are similar inspirit to the CDDR algorithm in the sense that theyaddress competitiveness. However, the models in suchworks are inappropriate for managing replication indistributed databases. For example, the replacementissue (i.e. which page to replace), that is importantin paging, usually is not a factor in replicated datamanagement.There has also been work addressing dynamic da-ta replication algorithms in [20]. However the algo-rithms there do not allow concurrent requests, and re-quire centralized decision making by a processor thatis aware of all the requests in the network. In con-trast, our algorithm is distributed, and allows concur-rent read-write requests.Finally, in [2] we proposed algorithms for dynamicreplication. However, these algorithms were depen-dent on the network having the tree topology, a lim-itation removed by the CDDR algorithm. In [3], weproposed another dynamic replication algorithm thatwas also independent of the of the network topology.However, in contrast to CDDR, none of the algorithms(in [2] and [3]) is competitive.The rest of this paper is organized as follows. Sec-

tion 2 presents the primary-copy model, and the CD-DR algorithm. Section 3 discusses practical issues re-lated to the implementation of the algorithm. Section4 analyzes the CDDR algorithm from the competitive-ness point of view. Section 5 provides �nal commentsand discussed future work.2. The CDDR algorithmIn this section we present the CDDR (CompetitiveDynamic Data Replication) algorithm.We de�ne an object to be a unit of data to be repli-cated, and the replication scheme of the object to bethe set of sites which hold an object replica. A datasite is a site that belongs to the replication scheme.A non data site is a site that does not belong to thereplication scheme. We suppose the read-write modelis the following (called here as the primary-copy mod-el). At any point in time one of the data sites is desig-nated as the primary site (we denote it by p). Initiallythe replication scheme contains p alone. Whenever adata site issues a read request for the object, it is ser-viced locally. When a non-data site issues a read, therequest is forwarded to, and serviced by p. A site swrites the object by sending it to p, and in turn ppropagates the write to all the available data sites. Inother words, the update policy is `read one write allavailable'[5].Every site in the network has a status. Status 1indicates that this site is a data site, status 0 meansthat this site is a non data site. Every site knowsits own status and where the current primary site is.The primary site knows every site's status. We de�nethe r-write (remote write) of a site s to be the writerequest issued from any other site (i.e. not from s) inthe network.For every site s there are two associated counters,based on which the status of s is determined. The �rstis the read-counter, which counts the number of readss issued. The second counter is the r-write counter,which counts the number of r-writes of site s.The counters of a data site reside at the data site.These counters can be maintained since the data siteknows how many reads it issues, and how many r-writes the primary site propagates to it. All the coun-ters of the non data sites reside at the primary site p.These counters can be maintained at p, since p knowshow many reads a non data site issues, and how manywrites any site issues. Therefore, the primary site de-cides for the non data sites whether or not they enterthe replication scheme, based on their counters.Intuitively, these two counters establish the follow-ing trade-o�. A site s being in the replication schemeincreases the communication cost of every r-write, s-ince it has to be propagated to s, and it decreases the2

communication cost of every read from s. Observethat whether or not s is in the replication scheme doesnot a�ect the communication cost of a write from s,nor does it a�ect the communication cost of a readissued by a site other than s.At the intuitive level, the replication schemechanges as follows. If the primary site receives moreread requests from a non data site j, then it will tell jto enter the replication scheme; whereas if the primarysite receives more write requests from sites other thanj, then it will keep j out of the replication scheme.The data sites decide by themselves whether or not toexit from the replication scheme based on the countersthey have. If the data site i issues more read requests,then it will stay in the replication scheme, whereas ifi receives more r-write requests from the primary site,then it will exit from the replication scheme. When theprimary site needs to exit from the replication scheme,it has to choose a new site to inherit the primary role.The following algorithm is the formal description ofhow these counters are used for the dynamic replica-tion and reallocation. The algorithm has a param-eter k, which determines how frequently the replica-tion scheme changes. In section 4.5, we will discussthe tradeo�s in choosing k.CDDR(k) Algorithm1. After issuing a read request, a data site i in-crements its read-counter by one. If i0s read-counter reaches k, then i remains in the repli-cation scheme and initiates the following ResetAction;Reset Action: Reset the read-counter and ther-write counter to 0.2. Upon receiving a read from a non data site j, theprimary site p increments j0s read-counter by one.If the read-counter reaches k, then p responds bysending a copy of the object to j and tells j to en-ter the replication scheme. Speci�cally, p initiatesthe following Join Action for j;Join Action: p changes site j0s status from 0 to1, and it tells j to keep the copy and to ini-tialize its own counters.3. Upon receiving a propagated write from p, adata site s, which is not the primary site (i.e.s 6= p), does the following. s increments its r-write counter by one. If its r-write counter reach-es k, then it exits from the replication schemeand informs the primary site of this change, byinitiating the following Exit Action;Exit Action: Reset the status of s to 0, and tellp to initialize the counters for s.

4. Upon receiving a write request from any site, ppropagates the write to every available data site,and p increments by one the r-write countersof the non-data sites. For each r-write counterat p that reaches k, p initiates the Reset Ac-tion (see above). Additionally, if the write re-quest is not initiated from p, and p0s own r-writecounter reaches k, then p exits from the repli-cation scheme by initiating the following SwitchAction;Switch Action:(a1) If currently there is another site in the repli-cation scheme, then p chooses one, say s, toinherit the primary role;(a2) Otherwise p selects the sender of the writerequest, say s, to inherit the primary role,and p initiates the Join Action for s;(b) Reset the status of p to 0, and tell s to ini-tialize the counters for p;(c) p sends to s the counters and statuses it kept;(d) p broadcasts a message to every site in thenetwork, indicating that s becomes the newprimary site.We de�ne an Action for a site s to be either an Exit,or a Reset, or a Join, or a Switch. The following exam-ple demonstrates the algorithm CDDR(k) for (k=2).Example 1: Suppose the network consists of threesites f1, 2, 3 g. Initially there is a single replica of theobject residing at site 1. The communication struc-ture is as shown in Fig. 1 (the dark round site indi-cates the primary site, a dark box site means a datasite, a light box site means a non data site). The re-quest sequence is r11r23r32w41r53w63r72r83w92r101 w111 , wherethe superscript indicates the order of the request inthe sequence, and the subscript tells at which sitethe request is initiated. For example, r83 means thatthe eighth request is a read issued from site 3, w41means that the fourth request is a write from site 1.2 w1 3Figure 1.To start the CDDR(2) algorithm, we initialize site1's status to 1, the others' status to 0, and all sites'counters to 0 at site 1. The table below indicatesthe sites' status (shadow means a site currently in thereplication scheme) after each request, the values ofthe read-counter (above the slash line) and the r-writecounter (below the slash line) after each request.3

After request 1, site 1's read-counter becomes 1; Af-ter request 2, site 3's read-counter becomes 1; Afterrequest 3, site 2's read-counter becomes 1; After re-quest 4, the r-write counters of site 2 and site 3 be-come 1; Request 5 makes site 3's read-counter reachk = 2, site 1 (the primary site) initiates the Join Ac-tion for site 3, 3 becomes a new data site, and its twocounters are both initialized at site 3; The communi-cation structure is shown in Fig. 2. After request 6,site 1's r-write counter becomes 1. Request 6 makessite 2's r-write counter reach k = 2, hence the primarysite (site 1) initiates the Reset Action for site 2, andsite 2's counters are thus becoming 0's. After request7, site 2's read-counter becomes 1; After request 8,site 3's read-counter becomes 1; After request 9, site3's r-write counter becomes 1, and request 9 makessite 1's r-write counter reach k = 2, hence site 1 (theprimary site) initiates a Switch Action for itself, itsprimary role is switched to site 3 (the other currentdata site), and 1's own counters are both cleared to0's. The communication structure is shown in Fig. 3.
site 1

site 2

site 3

 r-write
 read r 1

1
r 2

3
r 3

2
w 4

 1
r 5

3
w 6

 3
r 7

2
r 8

3
w 9

 2
r 10

 1
w11

 1

1 1 1 1 1 1 1 1 0 1 00 0 0 0 0 1 1 1 0 0 0

0 0 0 1 1 0 0 0 0 0 10 0 1 1 1 0 1 1 1 1 1

0 0 0 1 0 0 0 0 1 1 00 1 1 1 0 0 0 1 1 1 02 u1 3Figure 2. 2 u3 1Figure 3.After request 10, site 1's read-counter becomes 1;After request 11, site 2's r-write counter becomes 1,and this request makes site 3's r-write counter reachk = 2. Site 3 initiates a Switch Action to switch theprimary role from site 3 to site 1 (the writer, a nondata site). The communication structure becomes thesame as in Fig. 1. 23. Practical issuesIn this section we discuss how the CDDR algorith-m is implemented in a distributed environment. Weaddress the issues of concurrent read-write requestsissued by di�erent transactions, performance consid-erations, and coping with failures.3.1 Concurrency controlIn this subsection we show how the CDDR algorith-m can be combined with distributed two-phase lockingto preserve one-copy serializability [6].The concurrency control can be performed as fol-

lows. Each write request exclusively locks (x-lock) allavailable copies of the object, and each read request s-locks (shared lock) the primary copy, or the local copy,depending on the site that performs the read request.A transaction which accesses the object is executedas follows. Every site executes the CDDR algorithm(i.e. servicing the request, initiating the Actions tochange the replication scheme, and sending messagesas required) between the lock and the unlock of theobject.The `read one write all' protocol preserves the one-copy serializability (see [8], [9] and [10]). Althoughthe meaning of `all' in our context changes dynamical-ly, the replication scheme change happens while thetransaction is holding the lock(s), thus each transac-tion has a �xed view of the replication scheme before itstarts, and this replication scheme can not be changedby other transactions during its execution. Thereforeone-copy serializability is preserved as in the case ofstatic replication.3.2 Other performance issuesIn this subsection we deal with some special perfor-mance issues raised by switching the primary site.Because the primary role may switch from one siteto another, a site s may send a service request to theprimary site before s receives the primary-site-switchinformation. If s receives the primary site switch mes-sage before the request is serviced, then s re-sends therequest to the new primary site. If an o�-switchedprimary site s receives a request directed to a primarysite, then s ignores the request.In the CDDR algorithm, a write request may causeseveral Exit and Reset Actions for di�erent sites aspart of the transaction. If a Switch is to occur asa result of this write, then, for performance reasons,all these Actions should complete before the Switch.Otherwise, the status of a data site may have to betransmitted twice from the o�-switched primary siteto the new primary site.When the primary site p initiates a Join Action fora non data site j, it sends a join message to j. Thisindication is piggybacked on the copy of the objectsent to j.When a propagated write results in an Exit Actionof a data site i, i will send an exit message to p. Thisindication is also piggybacked, this time on the writeacknowledgment to p.3.3 Failure and recoveryIn this subsection we discuss how the CDDR algo-rithm copes with failures. We suppose here that allfailures are clean[5], i.e. the failure can be detectedand a failed site is totally down. A site failure mayoccur at the non data site, non-primary data site or4

at the primary site. Each one of these cases is treateddi�erently.A non data site's failure does not a�ect the execu-tion of read and write requests at the other sites. Theprimary site may not know that the site has failed.If a non-primary data site i fails, any x-lock request-ed by the primary site p (due to a write request) willnot be acknowledged. If p does not get any responsefrom a data site i to the x-lock request, then p as-sumes that i has failed. Then p sets i0s status to 0,and continues.If the primary site fails, any read request submit-ted from non data site can not be serviced (the s-lockrequested is not acknowledged), and the write requestsubmitted from any site is not acknowledged. If a sitedoes not get an acknowledgment from p, it assumesthat p has failed. All sites, except the primary, willexecute an election protocol to select some data siteas the new primary site.Since the number of copies of the object varies intime, the dynamic replication and allocation algorith-m is vulnerable to failures that may render the ob-ject inaccessible. To address this problem, the usermay impose reliability constraints of the following for-m: \The number of copies cannot decrease below athreshold, say t." If such constraint is present, thenthe primary site p refuses to accept the exit of a datasite, if such exit will downsize the replication schemebelow the threshold. In other words, p informs the sites that the request to exit from the replication schemeis denied; subsequently, writes continue to be propa-gated to s. s continues to reissue the request whenev-er the exit comparison dictates to do so. The requestmay be granted later on, if the replication scheme ex-panded in the meantime.When a site s recovers from failure, the recoveryprocedure will send a recovering message to every sitein the network. Only the primary site p responds tothis message. The other sites ignore this message. Up-on receiving this message, p assumes that s is a nondata site, resets its status to 0, and initializes its twocounters.4. Analysis of the CDDR algorithmIn this section, we formulate the cost objective func-tion, and we show that CDDR(k) is 2k-competitive.Also we discuss the strategy of choosing k.4.1 Request schedulesA �nite sequence of read-write requests of the objec-t, = o1o2o3:::on, will be called a schedule. We denotethe consecutive reads of between its ith write andits (i + 1)st write by R(i), and the consecutive readsbefore the �rst write by R(0). Thus for convenience,

we sometime denote the schedule by = R(0)w1R(1)w2 : : :wnR(n)where wi is a single write request, R(i) is zero or moreread requests.Actually, in practice, the read requests in R(i) maybe partially ordered. Although in the proof we assumethat the read requests in R(i) happen sequentially, theproof still holds even if the reads are partially ordered.4.2 Cost functionWe suppose that the communication cost of movingthe object between two sites is 1. Therefore if thereplication scheme consists of sites f1,2,3g, and site 4reads the object, then the communication cost is 1. Ifsite 4 writes the object, then the communication costis 3.For any schedule = o1o2 : : : on, we de�ne its Con-�gured Schedule to be a request-scheme sequenceX0o1X1o2X2 : : : onXnwhere Xi is the replication scheme after the ith re-quest (we call Xi the associated replication scheme ofoi), and X0 is the replication scheme before the �rstrequest of the schedule.An o�ine dynamic replication algorithm is onewhich knows the whole request schedule in advance,and maps the schedule to a con�gured schedule beforethe execution. It can con�gure the optimal schedulefor di�erent cost functions.An online dynamic replication algorithm does nothave knowledge of the whole schedule, it changes thereplication scheme based on the pre�x received. Uponreceiving a request oi, an online dynamic replicationalgorithm (say algorithmA) con�gures the next repli-cation scheme Xi based on the preceding con�guredschedule and the current request oi. In other words,the algorithm A con�gures the associated replicationscheme of a request immediately after the request is is-sued, and before the next request is issued. For a readrequest, we de�ne its incurred communication cost tobe the most e�cient way to replicate the most up-to-date copies in the set Xi�1 to the set Xi, and toservice the request. For a write request, we de�ne itsincurred communication cost to be the cost to real-locate the most up-to-date copy (held by the writer)to the set Xi. This will become clear in the next ex-ample. For the schedule = o1o2:::on, we de�ne theincurred cost of algorithm A for schedule , denotedCOSTA() to be the sum of all the communicationcosts incurred in each request.4.3 CompetitivenessAfter formulating the cost function of a dynamicreplication algorithm for an arbitrary schedule, we cande�ne the notion of competitiveness. Competitiveness5

is a widely-accepted way to measure the performanceof an on-line algorithm (see [1, 4]). Intuitively, a c-competitive online dynamic replication algorithm isan algorithm which costs at most c times as muchas any other (online or o�ine) dynamic replicationalgorithm, for any schedule. Formally, a c-competitivedynamic replication algorithmP is one for which thereare two constants c and d, such that for any requestsequence , COSTP () � c �COSTA()+d, where Acan be any on-line or o�-line algorithm. It bounds theworst case cost to be within a constant factor of theoptimal algorithm. We will show that the algorithmCDDR(k) is 2k-competitive.4.4 Request constraintWe analyze the CDDR algorithm for transactionsthat obey the following constraint.NBW Constraint `no blind write' is allowed, i.e.,a transaction can have at most one write for anobject, and each write must have at least one ref-erencing read i.e. a read for the same object thatoccurs before the write.This constraint is practically reasonable since one doesnot usually change the value of an object without read-ing the object beforehand.The NBW constraint, combined with a concurrencycontrol mechanism that guarantees one-copy serializ-ability ([6] and [7]) (e.g. two-phase locking), ensuresthe following. In a schedule, for any object O, be-tween any two writes of O there is at least one readof O. The reason for this is that any write (say fromtransaction T1) that occurs between a write (say fromtransaction T2) and one of its referencing reads (fromtransaction T2) will violate serializability.4.5 The main analysis resultOur main analysis result is the following.Theorem: If each transaction is NBW-constrainedand each schedule is 1-copy-serializable, thenCDDR(k) is 2k-competitive.The complete proof of the above theorem is omit-ted because of space limitations. Intuitively, the proofproceeds in three steps. First, we devise the low-er bound on the communication cost. Second, weshow that CDDR(1) is 2-competitive under constraintNBW , by comparing it to the lower bound. Third, weshow that when using CDDR(k) the cost is at mostk times as much as that of using CDDR(1). Thesethree steps combined prove the theorem.A question that arises at this point is why not usek = 1 for maximum competitiveness. The answer isthat in this paper, we did not consider the cost ofcontrol messages, such as the broadcast notifying all

sites of the primary site switch. We only consideredthe communication cost of transmitting the replicatedobject, since we assume that the object is much largerthan a control message.However, the control messages cost may become sig-ni�cant when k is small, since a lower k increases theprobability of a primary site switch. At the extreme,when k = 1, every write causes a switch if the write isnot initiated at the primary site. By choosing a largerk, the replication scheme will be more stable and thecommunication cost of control messages will be rela-tively small, while the CDDR algorithm will still becompetitive.5. Conclusion and future workWe have presented a practical algorithm for dynam-ic data replication, and we described how it is im-plemented in a distributed fashion. Additionally, weproved an important theoretical result stating that theCDDR algorithm is competitive, i.e., its cost is withina constant factor of the lower bound.The CDDR algorithmadapts the replication schemeto changing read-write patterns. For example, if for aperiod of time, the only access to an object o in thedistributed system consists of reads and writes from aparticular site s, then the CDDR algorithm will movethe replication scheme of o to include s only. In con-trast, if for a period of time, all the sites in the dis-tributed system issue only reads (and not writes) of o,then the CDDR algorithm will change the replicationscheme of o to include all the sites in the distribut-ed system. It is important to note that these changesoccur in a distributed fashion, as a result of statisticscollected locally at each site.The algorithm is based on two techniques. One isthe existence of a primary copy (or site), and the sec-ond is the `read one write all available' method.The CDDR algorithm is performed for each logi-cal object independently of any other logical object.In other words, di�erent objects may have di�erentreplication schemes and di�erent primary sites.We conjecture that the CDDR algorithm has thefollowing property. When the read-write pattern be-comes regular (e.g., site 1 issues 2 reads and 1 writeper time unit, site 2 issues 3 reads and 2 writes pertime unit, etc.), then the replication scheme becomes�xed, and the �xed replication scheme is optimal forthe read-write pattern. This is a di�erent (than com-petitiveness) measure of performance for a dynamicreplication algorithm, and it was used in [2]. We in-tend to prove this conjecture.This CDDR algorithm has not taken the I/O costof data replication into account. However we havedeveloped a competitive algorithm that optimizes a6

cost function which combines both the I/O and thecommunication cost. This algorithm is beyond thescope of this paper.References[1] M. Manasse, L.A. McGeoch, and D.Sleator, Com-petitive algorithms for online problems, Proc.20th ACM STOC, page 322-333, ACM 1988[2] Ouri Wolfson and Sushil Jajodia, Distributed Al-gorithms for Dynamic Replication of Data, Proc.of ACM-PODS, 1992[3] Ouri Wolfson and Sushil Jajodia, An Algorithmfor Dynamic Data Distribution, Proceedings ofWMRD, 1992[4] A. Fiat, R, Karp, M.Luby, L.A. McGeoch,D.Sleator, N.E. Yong, Competitive paging algo-rithms, Journal of Algorithms, 12, pages 685-699,1991[5] N. Goodman, D. Skeen, A. Chan, U.Dayal, S.Fox, D. Ries, A recovery algorithm for a distribut-ed database system, Proc. 2nd ACM SIGACT-SIGMOD, Symp. Database System, Atlanta, GA,March 1983, pp 8-15[6] P. Bernstein, V. Hadzilacos, and N. Goodman,Concurrency control and recovery in databasesystems, Addison-Wesley (1987)[7] C. Papadimitriou, The serializability of concur-rent updates, Journal of the ACM, 26(4), pp. 631-653[8] Michael J. Carey, and Miron Livny, Distribut-ed concurrency control performance: A study ofalgorithms, distribution and replication, Proc. ofthe 14th VLDB Conf. Los Angeles, CA, 1988[9] Hector Garcia-Molina, and Robert K. Abbot-t, Reliable distributed management, Proc. of theIEEE, Vol. 75, NO. 5, May 1987[10] P.A. Bernstein, and N. Goodman, An algorithmfor concurrency control and recovery in replicateddistributed databases, ACM-TODS, Vol. 9, No. 4,December 1984, Pages 596-615[11] O. Wolfson and A. Milo, The Multicast Policyand Its Relationship to Replicated Data Place-ment, ACM TODS, 16 (1), 1991.[12] L. W. Dowdy and D. V. Foster, ComparativeModels of the File Assignment Problem, ACMComputing Surveys, 14 (2), 1982.

[13] R. Alonso, D. Barbara, H. Garcia Molina, Quasi-copies: E�cient data sharing for information re-trieval systems, Proc. of EDBT'88, LNCS 303,Springer Verlag.[14] R. Alonso, D. Barbara, H. Garcia Molina, Datacaching issues in an information retrieval system,ACM TODS, 15 (3), 1990.[15] D. Barbara, H. Garcia Molina, The case for con-trolled inconsistency in replicated data, Proc. ofthe IEEE workshop on replicated data, 1990.[16] R. Ladin, B. Liskov, L. Shrira, A technique forconstructing highly available distributed services,Algorithmica 3, 1988.[17] N. Krishnakumar and A. Bernstein, Bounded ig-norance in replicated systems, Proc. of ACM-PODS '91.[18] D. Sleator and R. Tarjan, Amortized E�ciencyof List Update and Paging Rules, CACM 28(2),1985.[19] A. Karlin, M. Manasse, L. Rudolph, D. Sleator,Competitive Snoopy Caching, Algorithmica, 3 (1),1988.[20] Y. Bartal, A. Fiat, Y. Rabani, Competitive Al-gorithms for Distributed Data Management, 24thAnnual ACM STOC, 5/92, Victoria, B.C. Cana-da.APPENDIX: Proof of the TheoremA.1 Lower BoundWe will �rstly show the following LB algorithm isthe lower bound for an arbitrary schedule. Then weuse LB as a yardstick to measure the competitivenessof other algorithms.Intuitively, LB performs as follows. For every read,LB reads from one copy, while for a write it doesnot write to every available current copies, insteadit changes the replication scheme to a singleton andwrites to the new replication scheme.LB Algorithm1. For each write request, the replication schemeshrinks to the singleton consisting of the writingsite alone;2. For each read request, it reads locally if it isin the replication scheme; otherwise it reads fromthe most recent writer, the replication scheme isthen expanded to include this reader.7

The following example demonstrates the LB algo-rithm.Example 2: Suppose the network consists of threesites f1, 2, 3 g. Initially there is a single replica ofthe object residing at site 1. The request schedule isr12r23w33r41, where the superscripts and the subscriptshave the same meaning as in Example 1. Then byusing LB the replication scheme changes as follows.After request 1, site 2 joins the replication scheme,which costs 1; After request 2, site 3 joins the replica-tion scheme, which costs 1, and the replication schemeconsists of all sites; After request 3, the replicationscheme shrinks to consist of site 3 (the writer) alone,site 1 and 2 exit, with 0 cost; After request 4, thereplication scheme expands to include site 1 (the read-er), which costs 1. i.e., the con�gured schedule is f1gr12f1; 2g r23f1; 2; 3g w33f3g r41f1; 3g; and the total costis 3. 2We will show the algorithm LB is the best dynamicreplication in this model for any request schedule asthe following lemma 1.Lemma 1: LB is cost-optimal.Proof: Suppose the schedule is = R(0)w1R(1)w2 : : :wnR(n)We denote the schedule of the formwiR(i) by �i. Sincethe incurred communication cost of this schedule foralgorithm A is the sum of all the costs incurred byeach request, thusCOSTA() = COSTA(R(0)) + nXi=1 COSTA(�i)For requests R(0), LB costs the number of distinctreaders ofR(0) which are not in the replication scheme.That is obviously the most economic cost among alldynamic replication algorithms.Thus it su�ces to show that for each �i, the incurredcommunication cost for LB is also optimal.Assume � = w0r1r2:::rk, where the subscripts de-notes the site from which the write request w or readrequest r is issued. Then we need only to consider theschedule of the form �. Let the request sequence �together with the associated replication schemes be asfollows � = w0X0r1X1:::rkXkwhere w0 is the write request issued by site 0, X0is the associated replication scheme after this writerequest, ri is the read request issued by i and Xi isthe associated replication scheme with this read. Weassume that there are x distinct sites in the (k + 1)readers/writer.In this varying replication scheme sequence, the ob-ject traverses from the writer 0 to the set X0, from

X0 to fr1g [X1, from fr1g [X1 to fr2g [X2 andso on. Finally the edges used will connect all thesites in Y = f0; 1; :::; kg, and all the sites in Xi for0 � i � k. Hence these edges will form a connected(possibly multi-edged) subgraph say H. Let H 0 be thegraph obtained fromH by simply deleting all the mul-tiple edges. Then H 0 is obviously a subgraph of thewhole network G, and H 0 has at least x�1 edges sinceit connects x sites. Therefore the lower bound of thecost incurred for � is x�1 using any algorithmA. Wecan see easily that the algorithm LB will cost exactlyx� 1 for �, hence LB is cost-optimal. 2A.2 Competitiveness of CDDR(1)Lemma 2: CDDR(1) is 2-competitive under the con-straint NBW .Proof: Consider the request schedule = R(0)w1R(1)w2 : : :wnR(n)We know each read will simply expand the replica-tion scheme to include the reader with the cost 1 (ifthe reader was not in R), and each write will simplywrite to every replica including the replica the writer isholding (the writer must had a priori read before thiswrite and after any other write due to the NBW con-straint) and then the others will exit, with the writecost (# of replicas � 1). Then we see the cost forR(i) is the number of distinct readers other than thepreceding writer in this sequence. The (i+1)st writeris in R(i) due to the NBW constraint, hence this writewill cost at most (1+number of distinct readers otherthan the preceding writer in R(i) � 1), where the �rst1 is for the preceding writer. Therefore wi+1 costsat most as much as R(i) does. We see that R(i) willproduce the same cost using CDDR(1) as using LB,hence CDDR(1) produces at most twice as much costas LB does. i.e. CDDR(1) is 2-competitive. 2A.3 Re-formulating the Cost FunctionIn order to prove this theorem, we introduce thefollowing notation and analyze the cost incurred inthe request sequence for an algorithm A whereA executes the `Read One Write All' protocol. Letthe request sequence be = o1s1o2s2 :::omsm wheresi is the site from which the request oisi is is-sued. For algorithm A, let the con�gured scheduleis R0Ao1s1R1Ao2s2 :::Rm�1A omsmRmA . We de�neci = 8>><>>: 0 oisi is a read, si 2 Ri�1A1 oisi is a read, si 62 Ri�1AjRi�1A j � 1 oisi is a write, si 2 Ri�1AjRi�1A j oisi is a write, si 62 Ri�1Ato be the cost of request oisi . The total incurred cost8

of for A is COSTA() = mXi=1 ci.For each site s, we de�ne the associated status se-quence of algorithm A for is ts0o1s1ts1o2s2 :::omsmtsm. Wede�ne the p-cost of a site s for the request oisi of thealgorithm A as followspsi (A) = 8>>>>>><>>>>>>: 0 oisi is a read, si 6= s0 oisi is a read, si = s, tsi�1 = 11 oisi is a read, si = s, tsi�1 = 00 oisi is a write, tsi�1 = 00 oisi is a write, tsi�1 = 1, si = s1 oisi is a write, tsi�1 = 1, si 6= si.e. the p-cost of site s for the request oisi is one only if(1) s is not in the replication scheme and oisi is a readfrom s or (2) s is in the replication scheme and oisi isan r-write of s. Otherwise its p-cost is zero. For thesite s, the total p-cost is PCs(A) = mXi=1 psi (A). Noticethat the p-cost of a site s depends on its own statusand the request, it has nothing to do with the datareplication scheme. Assume N is the number of sitesin the network, then ci = NXs=1 psi . The total incurredcost of for A isCOSTA() = mXi=1 ci = mXi=1 NXs=1 psi= NXs=1 mXi=1 psi = NXs=1PCs(A)To prove the theorem, we compare the p-cost of eachsite s for CDDR(k) with that for CDDR(1). weare going to show that the p-cost of each site forCDDR(k) is at most k times as much as that forCDDR(1), thus to conclude the theorem.Assume by CDDR(k), the site s's status will be re-set n times as t1; t2; :::; tn, the request sequence isto be split by these statuses as subsequences ast0 0t1 1:::ti iti+1:::tn nwhere t0 is the initial status of the site s before therequest sequence 0. We de�ne this sequence tobe the action-status sequence of site s, and each i(0 � i � n) is called a subsequence of the action-statussequence. = 0 1::: n and inside each subsequence i no Action of site s is taken. Then we have the fol-lowing lemmas:A.4 Auxiliary ResultsLemma 3: Given a sequence , by using CDDR(k)algorithm the site s0s action-status sequence ist0 0t1 1:::ti iti+1:::tn nThen using algorithm CDDR(1), site s's status willbe ti+1 after request sequence i as using CDDR(k)

under constraint NBW.Proof: Assume the last request in i is q. This qcauses some Action of site s be taken, If this q is aread from s, the Action can only be a Join if s wasnot in the replication scheme, or a Reset if s was. If qis an r-write of s, the Action can be either a Reset if swas not in the replication scheme, or an Exit if s was.If q is a write from s, the Action can only be a Switchno matter s was in the replication scheme or not. qcan not be a read from other site since other site'sread request will not cause s0s status reset. Thus wecan verify this lemma in only in the following cases.Case 1: q is a read from s, and s is a non datasite, i.e. ti = 0. Then ti+1 is set by the Join Actionof CDDR(k), hence equals 1. Using CDDR(1), thestatus of s after its read is obviously one.Case 2: q is a read from s, and s is a data site,i.e. ti = 1. Then ti+1 is set by the Reset Actionof CDDR(k), hence equals 1. Using CDDR(1), thestatus of s after q is 1 too.Case 3: q is an r-write of s, and s is a non data site,i.e. ti = 0. Then the primary site must have detectedk r-writes and take the Reset Action of CDDR(k),hence ti+1 = 0. Using CDDR(1), every site (exceptthe writer) will exit from the replication scheme, thusafter q, s is not in the replication scheme either.Case 4: q is an r-write of s, and s is a data site, i.e.ti = 1. Then s detects that it has k r-writes alreadyand takes the Exit Action (or Switch Action if s isthe primary site). Hence ti+1 = 0. Using CDDR(1),s will not be in the replication scheme either afterrequest q.Case 5: q is a write from s, s becomes the newprimary site by the Switch Action taken by the oldprimary site, then ti+1 = 1. By the constraint NBWwe know that before this q, site s must have issued aread r for the priori reference, and between the r andthis q there is no other write request, which meansif we use CDDR(1), site s will join the replicationscheme after request r and won't exit through requestq. Therefore s will be in the replication scheme afterrequest q. 2From this lemmawe see that for any sequence , wecan divide it into subsequences of the action-status se-quence by using CDDR(k). And at the beginning ofeach such subsequence i, CDDR(k) will set the sites in the same status as CDDR(1) does. Suppose in ithere are ai r-writes, bi reads. In the following lemmas,we are going to compare the p-cost of the subsequenceof the action-status sequence between CDDR(k) andCDDR(1).Lemma 4: Let i be a subsequence of the action-status sequence t0 0t1:::tn n of site s by using9

CDDR(k) (i 6= n). If ti = ti+1 = 0, then for i,PCs(CDDR(k)) � k � PCs(CDDR(1)) under con-straint NBW.Proof: Upon �nishing the request sequence i us-ing CDDR(k), the Action taken to site s must be aReset. Assume i has ai r-writes and bi reads froms, then ai = k, and bi < k. PCs(CDDR(k)) = bi.If bi = 0, PCs(CDDR(k)) = PCs(CDDR(1)) = 0,the lemma follows. If bi 6= 0, then the �rst read ofs in i cost one using CDDR(1) since the site s isnot in the replication scheme before i by lemma 2.Hence PCs(CDDR(k)) < k � k �PCs(CDDR(1)) un-der constraint NBW. 2Lemma 5: Let i be a subsequence of the action-status sequence t0 0t1:::tn n of site s by usingCDDR(k) (i 6= n). If ti = ti+1 = 1, then for i,PCs(CDDR(k)) � k � PCs(CDDR(1)) under con-straint NBW.Proof: Upon �nishing the request sequence i us-ing CDDR(k), the Action taken to site s must be aReset. Assume i has ai r-writes and bi reads froms, then bi = k, and ai < k. PCs(CDDR(k)) = ai.If ai = 0, the lemma is obviously true. If ai 6= 0,by lemma 3 we see that the �rst r-write among air-writes of i costs 1 by using CDDR(1). HencePCs(CDDR(k)) < k � k �PCs(CDDR(1)). 2Lemma 6: Let i be a subsequence of the action-status sequence t0 0t1:::tn n of site s by usingCDDR(k) (i 6= n). If ti = 0; ti+1 = 1, then for i, PCs(CDDR(k)) � k �PCs(CDDR(1)) under con-straint NBW.Proof: Upon �nishing the request sequence i usingCDDR(k), the Action taken to site s must be eithera Join or a Switch. Denote the last request of i by q.If the Action is a Join, q must be a read from s. Inthis case, there are k such reads in i, and before i sis not in the replication scheme using either CDDR(k)or CDDR(1) by lemma 3. We see the p-cost of sites for i is exactly k using CDDR(k). The p-cost ofusing CDDR(1) is at least one, since the the �rst readwill cost that much. The lemma follows.If the Action is a Switch, q must be a write froms, and s is the new primary site and it is not in thereplication scheme before i. Then s must have is-sued a read in i due to constraint NBW and therequest immediately preceding i must be either anr-write request of s or no request (if i = 0). We seethat the incurred p-cost of s in i is less than k us-ing CDDR(k), while the incurred cost of s is at leastone for that read using CDDR(1). This completes theproof of this lemma. 2Lemma 7: Let i be a subsequence of the action-

status sequence t0 0t1:::tn n of site s by usingCDDR(k) (i 6= n). If ti = 1; ti+1 = 0, then for i, PCs(CDDR(k)) � k �PCs(CDDR(1)) under con-straint NBW.Proof: The last request q of i must be an r-write ofs. In this case, there must be k r-writes of s in i, ands is in the replication scheme using either CDDR(k)or CDDR(1) before i by lemma 3. We see the p-costof site s for i is exactly k using CDDR(k), while thep-cost of that using CDDR(1) is at least one for the�rst r-write. The lemma follows. 2Lemma 8: Let n be the last subsequence of theaction-status sequence t0 0t1::tn n of site s by us-ing CDDR(k). Then for n, PCs(CDDR(k)) �k � PCs(CDDR(1)) under constraint NBW.Proof: Assume that n has a r-writes and b reads.Since no Action is taken upon �nishing n, we havea < k; b < k. The status of site s before n is tn.Case 1: tn = 0. For n, PCs(CDDR(k)) = b. Ifb = 0, the lemma is obviously true. If b 6= 0, the �rstread among b reads costs 1 using CDDR(1) since sites is not in the replication scheme before n by lemma3. The lemma follows.Case 2: tn = 1. For n, PCs(CDDR(k)) = a. Ifa = 0, the lemma is obviously true. If a 6= 0, the �rstr-write among a r-writes costs one using CDDR(1)since site s is in the replication scheme before n bylemma 3. This completes the proof of the lemma. 2A.5 Proof of the TheoremProof of Theorem: Assume by using CDDR(k) al-gorithm the site s0s action-status sequence ist0 0t1 1:::ti iti+1:::tn nFor each subsequence si (0 � i � n), we see fromlemma 4, 5, 6, 7, and 8 that the p-cost of site s satis-�es PCs(CDDR(k)) � k � PCs(CDDR(1))therefore for the whole sequence , the p-cost satis�esPCs(CDDR(k)) � k �PCs(CDDR(1)). Therefore thetotal incurred cost satis�esCOSTCDDR(k)() = NXs=1PCs(CDDR(k)) �NXs=1 k �PCs(CDDR(1)) = k �COSTCDDR(1)()From lemma 8, we know CDDR(1) is 2-competitiveunder constraint NBW , thus CDDR(k) is 2k-competitive under constraint NBW . 210

