Cost and Imprecision in Modeling the Position of Moving Objects*

Sam Chamberlain?

Ouri Wolfsonf

Abstract

Consider a database that represents the location of
moving objects, such as tawi-cabs (typical query: re-
trieve the cabs that are currently within 1 mile of 33
Michigan Ave., Chicago), or objects in a battle-field.
Fristing database management systems (DBMS’s) are
not well equipped to handle continuously changing
data, such as the position of moving objects, since data
1s assumed to be constant unless it 1s explicitly modi-
fied.

In this paper we address position-update policies
and tmprecision. Namely, assuming that the actual
posttion of a moving object m deviates from the posi-
tion computed by the DBMS, when should m update
its position in the database in order to eliminate the
deviation? Furthermore, how can the DBMS provide a
bound on the error (i.e. the deviation) when it replies
to a query: what is the current position of m? We
propose a cost based approach to update policies that
answers both questions. We develop several update
policies and analyze them theoretically and experimen-
tally.

1 Introduction

Consider a database that represents the location of
moving objects. For example, for a database repre-
senting the location of taxi-cabs a typical query may
be: retrieve the free cabs that are currently within 1
mile of 33 N. Michigan Ave., Chicago (to pick-up a
customer); or for a trucking company database a typ-
ical query may be: retrieve the trucks that are cur-
rently within 1 mile of truck ABT312 (which needs
assistance); or for a database representing the current
position of objects in a battlefield a typical query may
be: retrieve the friendly helicopters that are currently
in a given region. The database may be either cen-
tralized or distributed, and the queries may originate
from the moving objects, or from stationary users.

To manage such databases by a traditional
database management system (DBMS) would mean

tDepartment of Electrical Engineering and Computer Sci-
ence, University of Illinois, Chicago, IL 60607

{Army Research Laboratory, Aberdeen Proving Ground,
MD

$Hughes Research Laboratories, Information Sciences Labo-
ratory, Malibu, CA

Department of Electrical Engineering and Computer Sci-
ence, University of Illinois, Chicago, IL 60607

lCentral University of Venezuela

*This research was supported in part by Grants NSF IRI-

9408750, DARPA N66001-97-2-8901, NATO CRG-960648, ARL
DAALO1-96-2-003, and a gift from Hughes Research Labs.

Son Dao?

Ligin Jiang Gisela Mendez!

that the moving objects (e.g. vehicles) have to contin-
uously send to the database updates of their position
via a wireless communication link. ' Frequent up-
dating may be expensive in terms of dollar-cost, or
performance and wireless-bandwidth overhead. Alter-
natively, if position updates are infrequent, then the
answer to position queries is outdated, i.e. imprecise;
this in turn may involve a penalty cost in terms of in-
correct decision-making. One of the contributions of
this paper is to establish the update frequency as a
function of the ratio between the update cost and the
imprecision-in-answering-queries cost. Namely, the
update frequency increases as the imprecision cost in-
creases, and it decreases as the update-cost increases.

Furthermore, we propose a technique to drastically
reduce the update cost. Specifically, we propose to
model the current position of a moving object as the
distance from its starting position, along a given route.
The distance continuously increases as a function of
time, without being updated. So, for example, the
DBMS knows that the moving object m started at
S5pm at position (zg,yp) on a given route known to
the DBMS, and it travels at 60 miles/hour; thus, at
any point in time after bpm, in response to a query, the
DBMS can easily compute the current position of m.
Our simulation experiments show that this technique
reduces the number of updates to 15% of the num-
ber used by the traditional, nontemporal method; this
saves 85% of the bandwidth and update-processing
overhead.

In the context of position attributes that change
continuously with time, the main issues we address
in this paper are position-update policies and impre-
cision. Namely, assuming that the actual position of
m deviates from the position computed by the DBMS
(namely the database position) due to the fact that
m does not travel continuously at ezactly 60 mi/hr,
how frequently should m update its position in the
database in order to eliminate the deviation? Fur-
thermore, how can the DBMS provide a bound on the
error (i.e. the deviation) when it replies to a query:
what is the current position of m?

We propose the following cost based approach to
update policies. We postulate that there is a given
cost for each unit of deviation (i.e. imprecision), and
there is a given cost of a database update. Then, at

1We assume that at any point in time each vehicle knows
its exact current position, using, for example, an onboard Ge-
ographic Positioning System (GPS). Position-update messages
can be carried through wireless data communication channels,
e.g. those provided by cellular data communication companies
such as RAM Mobile Data Co., satellite systems such as Irid-
ium, and multihop radio networks.

any point in time a moving object approximates the
deviation by curve fitting, using a simple estimator
function of time. The estimator function is used to
predict the future deviation assuming that the moving
object sends now a database position update, and also
to predict the future deviation in the absence of such
a message. An update is sent if the difference between
the deviation-costs exceeds the update cost. Then,
an update policy for a moving object m consists of: a
deviation cost function, an update cost, an estimator
function, a fitting method, and a predicted speed. The
deviation cost function is the cost of imprecision in
answering queries. The estimator 1s a simple function
used to approximate the deviation as a function of
time. For example, a possible estimator is the function
f(t) = at, where a is a constant and ¢ is the number of
time units since the last update. The fitting method
is the method used to approximate the deviation by
the estimator, e.g. for the function f(t) = at it is
the method of computing the constant a based on the
deviation. The update speed is the speed declared to
the database in the update, e.g. the current speed, or
the average speed since the last update.

In this paper we introduce, analyze, and evaluate
by simulation three update policies. Furthermore, we
show that if the DBMS knows the update policy used
by a moving object m, then it can compute at any
point in time ¢ a bound B on the deviation of m from
its database position. B is the uncertainty in response
to the following query entered at time ¢: what is the
current position of m? In other words, the actual po-
sition of m may deviate from the position returned by
the DBMS by at most B. Our simulations compare
the three update policies in terms of total cost and
uncertainty.

Then we address the indexing of position attributes.
The objective is to enable the DBMS to answer in
sublinear time, 1.e. without examining all the objects,
range queries of the form: retrieve the moving ob-
jects that are currently in a given polygon P. The
problem with a straight-forward use of spatial index-
ing is that since objects are continuously moving, the
position continuously changes, and thus the spatial
index has to be continuously updated, an unaccept-
able solution. The indexing method that we propose
avoids this problem by representing the range of cur-
rent possible positions of a moving object as a plane
in 3-dimensional time-space. Then, the processing of
queries on the position attribute is translated into the
problem of intersection of geometric bodies in this
time-space. The indexing method enables the retrieval
of both, moving objects that ”must be” in P, and mov-
ing objects that ”maybe” in P. The method uses our
results concerning the uncertainty of each object at
each point in time.

In summary, the contributions of this paper are as
follows:

e We quantify the database update frequency as a
function of the ratio between the update cost and
the imprecision cost.

e We introduce the concept of update policies to
be used by a moving object to determine when to

update its database position, and what should be
the update values.

e We introduce, analyze, and evaluate by simula-
tion three update policies.

e We show that for each one of the above policies
the DBMS can obtain a reasonable bound on the
error (i.e. the deviation of the database position
from the actual position).

e We introduce a method of indexing position at-
tributes, i.e. attributes whose value changes con-
tinuously as a function of time;

The rest of the paper is organized as follows. In
section 2 we introduce the position-attribute concept.
In section 3 we discuss imprecision, introduce three
update policies and their error bounds, and evaluate
them by simulation. In section 4 we introduce our
indexing method. In section 5 we compare our work
to relevant research, and in section 6 we conclude with
a discussion of our results.

2 Position attributes

A database is a set of object-classes. An object-class
i1s a set of attributes. Some object-classes are desig-
nated as spatial. Each spatial object class is either a
point-class, a line-class, or a polygon-class.

Point object classes are either mobile or station-
ary. A point object class O has a position attribute
P. If the object class is stationary, its position at-
tribute has two sub-attributes P.x, and P.y, represent-
ing the x and y coordinates of the object. If the object
class is mobile, its position attribute has seven sub-
attributes, P.starttime, P.route, P.x.startposition,
P.y.startposition, P.direction, P.speed, and P.policy.

The semantics of the sub-attributes are as follows.
P.route is (the pointer to) a line spatial object indi-
cating the route on which an object in the class O is
moving. 2 We assume that the database stores a set
of routes, and at any point point in time each object
moves along a unique route from the route database.
P.x.startposition and P.y.startposition are the x and
y coordinates of a point on P.route; it 1s the position
of the moving object at time P.starttime. In other
words, P.starttime is the time when the moving object
was at position (P.z.startposition, P.y.startposition).
We assume that whenever a moving object updates
its P attribute 1t updates the P.x.startposition and
P.y.startposition subattributes; thus P.starttime is
also the time of the last position-update. We assume
in this paper that the database updates are instanta-
neous, i.e. valid- and transaction- times (see [9]) are
equal. Therefore, P.starttime is the time at which the
update occurred in the real world system being mod-
eled, and the time when the database installed the up-
date. P.direction is a binary indicator having a value
0 or 1 (these values may correspond to north-south, or
east-west, or the two endpoints of the route). P.speed

2For simplicity, our discussion pertains to routes in 2-
dimensional space, but our concepts and results can be extended
to routes in 3-dimensional space.

is a linear function of a single variable ¢ that has value
0 att = 0. It indicates the speed of the moving object.
P.policy indicates the position-update policy used by
the moving object. Position-update policies are dis-
cussed in section 3. At this point we will just mention
that the bound on the error in computing the current
position of a moving object depends on the policy, thus
this information can be derived from the P.policy sub-
attribute.

We define the route-distance between two points on
a given route to be the distance along the route be-
tween the two points. Assuming that the route is given
by a piece-wise linear function, it is straightforward to
compute the route-distance between two points on the
route, and the point at a given route-distance from
another point. The database position of a moving ob-
ject at a given point in time is defined as follows. At
time P.starttime the database position is the pair
(P.z.startposition, P.y.startposition); the database
position at time A.starttime + g is the point on the
route P.route which is at route-distance P.speed - g
from the point with coordinates (P.z.startposition,
P.y.startposition). Intuitively, the database position
of a moving object at a given point in time ¢ is the
position of the object as far as the DBMS knows; it is
the position that is returned by the DBMS in response
to a query entered at time ¢t. As we shall see in the
next section, the under certain conditions DBMS will
also be able to provide a bound on the error, i.e. the
difference between the actual position of the object
and its database position.

3 Modeling imprecision

This section is divided into four subsections. In
subsection 3.1 we introduce the concept of a database
update policy for a moving object. In subsection 3.2
we discuss two particular update policies, the delayed-
and immediate- linear. In section 3.3 we derive error
bounds for these policies, i.e. bounds on the error of
an answer to a query of the form: retrieve the current
position of moving object m. In section 3.4 we intro-
duce the third update policy, describe the simulation
setup, and discuss the simulation results.

3.1 Database update policies

We assume that at the beginning of the trip the
moving object writes all the sub-attributes of the po-
sition attribute. Subsequently, the moving object
periodically updates its current position and speed
stored in the database. Specifically, a position up-
date is an update sent by the moving object to the
database; it consists of values for at least the sub-
attributes P.starttime, P.speed, P.x.startposition
and P.y.startposition. If during the trip the object
changes its route, then it sends a position update mes-
sage that includes the identification of the new route
to be stored in P.route. If we define the route distance
between two points on different routes to be infinite,
then this will trigger a position update whenever the
object changes routes; we will not elaborate on this
further.

A position update policy is a position-update pre-
scription for a moving object. It states when the mov-
ing object updates its position in the database, and

what are the update values. We propose a cost-based
approach to update policies. Formally, a position-
update policy of the moving object is a quintuple (de-
viation cost function, update cost, estimator function,
fitting method, predicted-speed). For the rest of this
subsection we define and discuss the components of
the position update policy.

Since between two consecutive position updates the
moving object does not travel at exactly the speed
P.speed, the actual position of the moving object de-
viates from its database position. Formally, the dev:-
ation d at a point in time ¢, denoted d(t), is the route-
distance between the moving object’s actual position
at time £ and its database position at time ¢. The devi-
ation is always nonnegative. Note that at any point in
time the moving object knows its current position, and
it knows the parameters of the last position-update.
Therefore at any point in time the (computer onboard
the) moving object can compute the current deviation.

The cost of the deviation between two time points
t1 and 5 is given by the deviation cost function, de-
noted COSTy(t1,t2); it is a function of two variables
that maps the deviation between the time points ¢
and ?, into a nonnegative number. For example, sup-
pose that the penalty for each unit of deviation re-
ported in response to a query is 1; and on average,
there is one query that retrieves the position of the
moving object per time unit. Then, the cost of a unit
of deviation per unit of time is one, and the cost of
the deviation between two time points ¢; and 5, is:

COSTy(t1,15) = /h d(t)dt (1)

ty

We call the function of equation 1 the uniform devia-
tion cost function.

In this paper we consider only update policies that
have the uniform deviation cost function. However,
there exist other deviation cost functions. For exam-
ple, the step deviation cost function carries a zero-
penalty for each time unit in which the deviation stays
below some threshold A, and a penalty of one other-
wise.

The update cost, denoted (', is a nonnegative num-
ber representing the cost of a position-update sent
from the moving object to the database. The update
cost may differ from one moving object to another,
and it may vary even for a single moving object dur-
ing a trip, due for example, to changing availability
of bandwidth. The update cost must be given in the
same units as the deviation cost. In particular, for the
uniform deviation cost function, C'is the ratio between
the update cost, and the cost of a unit of deviation
per unit of time. For example, the cost of a wireless
message using one of the wireless data transmission
services (e.g. RAM mobile data Co. or ARDIS Co.)
i1s 5 cents. Thus, if the the cost of a unit of deviation
per unit of time is one cent, then ' = 5.

Let t1 and £5 be the time-stamps of two consecutive
position updates. Then the position update policy
takes the total cost between t; and t5 to be:

COST(tl,tz) =C+ COSTd(tl,tz) (2)

The estimator function (see [7]) is a ” well-behaved”
function f(¢) by which we approximate the current de-
viation, i.e. the deviation at any time unit since the
last update; we restrict f(0) = 0 because the update
includes the current position of the moving object, and
therefore, zero time units after the update the devia-
tion is zero. For example, given a deviation d(t) for
0 <t < currenttime, the estimator can be the linear
function f(t) = a - t.

The fitting method is the method of determining the
coefficients of the estimator function based on d(t).
For example, for the estimator f(t) = af, a fitting
method is to compute a as the ratio between the cur-
rent deviation and the number of time units since the
last update. This means that if at time point ¢, the
deviation d(tg) = k, d(t) is estimated by the straight

k

line [, where the slope of [is a = 7o

The predicted-speed is the speed that will be stored
in the subattribute P.speed at each update. It rep-
resents the speed of the moving object following the
update. One possible value for the predicted speed
is the current speed of the moving object, another is
its average speed since the last update, and yet an-
other 1s the average speed since the beginning of the
trip. These values are based solely on the past. How-
ever, the moving object may also be able to estimate
the future speed based on known traffic patterns, or
based on a priori knowledge of the upcoming terrain,
or based on input from the user.

At any point in time g, using the update policy,
the moving object decides whether or not to send a
database update. It does so as follows. Assume that
at time ¢y the deviation is k. Using the estimator
function and the fitting method, it approximates the
current deviation by a function g(¢) of the number
of time units elapsed since the last update. Then it
assumes that the future deviation, i.e. the deviation
t time units after ¢y, is given by either: a) g(¢) if an
update is sent at time g, or b) g(¢) + k if an update
is not sent at time t3. For example, let ¢y, be the
number of time units that currently elapsed since the
last update. Suppose that the deviation at time g
is k, 1.e. d(tg) = k, and the estimator function is

f(t) = at where a = % If the moving object does not
update the database at time ¢y, then it is assumed that
t time units after ¢y the deviation will be % A4k I

the moving object does update the database at time
to, then it is assumed that ¢ time units after ¢, the

deviation will be % -1.

Now, using the deviation cost function and the up-
date cost, the moving object can compute whether or
not g 1s an optimal update point; namely, if an up-
date at time ¢y minimizes the total cost under these
assumptions. Exactly how to determine whether or
not tp is an optimal update point will be shown in
the next subsection for an estimator function that is
slightly richer than [.

Clearly, there is an infinite number of update poli-
cies, one for each combination of the quintuple compo-
nents. Observe that, since the update policy is a po-
sition subattribute, each position update may change

deviation
update
‘threshold ™ T e
a
0 b uEJdaIe t+b up%tate time
point point

Figure 1: The deviation as a delayed linear function

the policy. One reason to change the policy on an up-
date is that the most appropriate policy may be differ-
ent for different speed patterns. For example, a policy
for which the predicted speed is the current speed may
be appropriate for highway driving in nonrush hour
(when the speed fluctuates only mildly), whereas a
policy for which the predicted speed is the average
speed may be appropriate for city driving, where the
speed fluctuates sharply. The pattern of the current
speed is a parameter that may be entered by the user,
and changed during a trip.

3.2 The delayed and immediate linear up-
date policies
We will use the delayed linear function, defined
next, as the estimator function. A delayed linear func-
tion f is a function having the following formula.

f(t):{ a(t —b) @ftél;

where a,b are non negative constants. b 1s called the
delay of f, and a is called the slope of f.

The rationale for this estimator function is the
following. In each update the object sends to the
database its current position and current speed to
update its (P.z.startposition, P.y.startposition) and
P.speed sub-attributes respectively. Taking the devi-
ation to be a delayed linear function means that fol-
lowing an update, the deviation is 0 for b units of time
(in other words, the moving object continues at the
declared speed for b time units), and then it starts
increasing at a rate of a, 1.e. according to a linear
function whose slope is a. In other words, after b
time units it starts moving at a speed v, such that
a = |v— P.speed|. Thus, d(t) has a delay of b and a
slope of a.

Assume that for given a and b numbers, the devia-
tion of a moving object following each database update
is a delayed linear function with delay b and slope a.
Then each update occurs when the deviation reaches
the same value. Let the update threshold be that value,
i.e. the value of the deviation for which the moving
object updates the database (see fig. 1). Let the opti-

mal update threshold, denoted kjj];’;, be the value of the
update threshold for which the total cost per time unit
is minimized. In other words, the total cost per time
unit is minimized when the moving object updates the
database each time the deviation reaches the optimal

update threshold.

Proposition 1: Let a and b be nonnegative num-
bers. Assume that following each database update
the deviation of a moving object is a delayed lin-
ear function with delay & and slope a. Assume that
the update cost is €. Then, for the uniform de-
viation cost function, the optimal update threshold
kY = /a2b? + 2aC — ab.

Example 1: Some real-world values of the vari-
ables in the optimal update threshold are as follows.
Assume that the cost for a 1-mile deviation is 1 cent
per minute, and C' = 5. Suppose that a vehicle sets its
speed on a route to be 1 mile per minute (60 mi/hr).
Suppose further that the vehicle travels at that speed
for 2 minutes, and then it stops (i.e. the delay is 2)
in a traffic jam. Stopping increases the vehicle’s de-
viation at a rate (slope) of 1 mile per minute. Then,

Va2b? +2aC — ab = 3.74 — 2 = 1.74. Namely, if the
vehicle uses the delayed linear policy, it will send a
database update when its deviation is 1.74 miles, i.e.
after it has been stopped for one minute and 44 sec-
onds. O

Now, the deviation will not always be a delayed-
linear function. Therefore, we will use a delayed-linear
function as an estimator of the deviation. The fitting
method used to evaluate the slope and deviation at
any point in time is called the simple fitting method
and 1s defined as follows. At any point in time, the
delay b 1s the number of time units from the last up-
date until the last time unit when the deviation was 0.
The slope a is the ratio between the current deviation
and t — b, where t is the time elapsed since the last
update.

The delayed-linear (dl) position-update policy is
the quintuple (uniform deviation cost function, update
cost C') delayed-linear estimator function, simple fit-
ting method, current-speed). Then, based on proposi-
tion 1, the moving object updates the database when-

ever the deviation reaches k%% = \/a2b2 + 2aC — ab.

opt —

Intuitively, the delayed-linear position update pol-
icy behaves as follows. At any point in time the
moving object computes the current deviation, k; if
k = 0, then the moving object does not do anything,
i.e. 1t does not consider a position-update. Other-
wise it computes the delay b and the slope a as fol-
lows. b is the number of time units from the last
update until the last time unit when the deviation

was 0; and if we denote by ¢ the number of time

units elapsed since the last update, then a = i—b

(clearly, since the current deviation is not 0, t—b > 0).
Now, if k¥ > va?b? 4+ 2aC' — ab, then the moving ob-
ject updates the database with the current position
and current speed; 1.e. it places its current position
in the P.x.startposition and P.y.startposition subat-
tributes, and its current speed in the P.speed subat-
tribute.

Observe that the delay and slope may change from
one update-to-update period to another. By updat-
ing at the current optimal update threshold, i.e. the
threshold for the current delay and slope, the moving
object makes the implicit assumption that the current
delay and slope will persist for the next update-to-

update period. In other words, if an update-to-update
period is a window, then the parameters of the cur-
rent window are projected onto the next window. This
paradigm, i.e. the assumption that the recent past is
indicative of the near future, is common in computer
science, as evidenced by many resource allocation poli-
cies (e.g. the LRU page replacement strategy).

To motivate the next update policy assume that
at each update, the moving object does not send its
current speed, but its average speed since the last
update. This makes sense when the current speed
changes rapidly (as in stop-and-go city driving), but
the average speed is stable. Since the average speed
most likely is different than the current speed, the
deviation will start increasing immediately. Thus, an-
other estimator function that we consider in this paper
is the immediate linear: it is the delayed linear func-
tion with a delay of 0. Namely, the immediate linear
function has the formula f(¢) = at for ¢t > 0.

The average immediate-linear (ail) position-
update policy consists of the quintuple (uniform devi-
ation cost function, update cost ', immediate-linear
estimator function, simple fitting method, average-
speed). Then, based on proposition 1, the moving
object updates the database whenever the deviation

reaches k%" = /2aC.

opt —

Intuitively, the average immediate-linear update
policy behaves as follows. At any point in time the
moving object computes the current deviation, k; if
k = 0, then the moving object does not do anything.

Otherwise 1t computes the slope a as a = %, where ¢
i1s the number of time units elapsed since the last up-
date. (In other words, it is approximated that if the
deviation increased from 0 to k since the last position
update, in the absence of an update at the current
time, the deviation will continue to increase at the
same rate; if an update is sent, then the deviation will

increase at the same rate starting from 0). Then, if

k > v2aC' the moving object updates the database by
placing its current position in the P.z.startposition
and P.y.startposition subattributes, and its average
speed since the last update in the P.speed subat-
tribute.

Now, we will make a few observations. First, it

is easy to see that for given positive ¢ and b, kgz’)z =

Va2b? + 2aC — ab < Va?b? + v/2aC — ab = k{)]. This
may seem to indicate that if & > 0, i.e. if the moving
object continues at the current speed after the update,
then the threshold for the delayed linear policy is lower
than that for the average immediate linear; which in
turn indicates that the delayed linear policy performs
more updates. However, this is deceiving. One reason
for this 1s that the delayed policy updates P.speed with
the current speed, which is usually different than the
average speed used by the immediate policy. There-
fore the deviation function for the two policies differs.
What if we consider the current immediate-linear
position-update policy that i1s similar to the average
immediate-linear, except that the speed used in the
update is the current rather than the average? (We
analyze the cil policy in section 3.4). Even then, for

a given deviation function d(¢), the slope a is i—b for

the delayed linear policy, and % for the average imme-
diate linear policy. It can be shown that the number
of updates under the two policies is incomparable in
general.

Second, consider the average immediate policy. It

is easy to see that since a = %, k > ~/2aC' if and only
if k> % Thus, for the simple fitting method:

o 20
e (3)

where t is the number of time units elapsed since the
last update. Therefore, kopt decreases as time passes
without an update. Thls means that, assuming that
the deviation decreases slower than time increases, the
moving object may generate a position update while
the deviation is decreasing.

3.3 Threshold bounds

For each moving object in the database the DBMS
knows the update policy at any point in time. Con-
sider a particular moving object o. If 0 uses the imme-
diate or delayed update policies, then at any point in
time the DBMS can compute the current database po-
sition of 0. However, the actual position of 0 may de-
viate from its database position by the optimal update
threshold. At any point in time the optimal update
threshold depends on the current slope (and delay),
which are unknown to the DBMS. Thus the DBMS
cannot compute the the actual position of 0. Nev-
ertheless, the DBMS can determine a bound on the
current deviation of o; in this subsection we show how
it can do so.

Remember that the deviation d(?) is the route-
distance of the vehicle’s actual position from its
database position. If the actual position is closer to
the starting position than the database position, then
we call the deviation slow (i.e. the object is behind
its position as reflected in the database), otherwise we
call it fast.

Proposition 2: Assume that a moving object uses
the delayed linear update policy, with update cost C'.
Assume that at some point in time P.speed = wv.
Then, if that point in time is ¢ time units after
the last update, the slow-deviation & is bounded by
min{v2vC, vt} ie. k < min{~/2vC, vt}. O

Intuitively, proposition 2 bounds how far the actual
position can be behind the database position. Note
that the DBMS can compute this bound based on val-
ues it knows, namely, v, C', and ¢.

Assume now that the maximum speed of the mov-
ing object during this trip 18 V', and that the DBMS
knows V. V may be determined by the characteris-
tics of the vehicle (e.g. it cannot go faster than 120
miles per hour), or it can be determined by the ex-
pected conditions of the trip (the vehicle will not go
faster than 60 miles per hour during rush hour). Anal-
ogously to proposition 2, it can be shown that:

Proposition 3: Assume that a moving object hav-
ing maximum speed V uses the delayed linear update
policy, with update cost C'. Assume that at some point

in time P.speed = v. Then, if that point in time is ¢
time units after the last update the fast deviation k

is bounded by k < mm{\/ —v) — t} O

Clearly, at any point in tlme the dev1at10n is either
fast or slow. Then, an immediate corollary of propo-
sitions 2 and 3 is:

Corollary 1: Assume that a moving object hav-
ing maximum speed V uses the delayed linear up-
date policy, with update cost C'. Assume that at
some point in time P.speed = v, and denote D =
maxz{v,V — v}. Then, if that point in time is ¢ time
units after the last update, the deviation k 1s bounded
by k < min{/2DC,Dt}. O

Example 1 (continued): As before, the cost for
a l-mile deviation is 1 cent per minute, and C' = 5.
Suppose that the current database speed (P.speed) is
1 (mile per minute), and the moving object is using
the delayed linear update policy. Then the bound on
the slow-deviation increases at the rate of 1 mile per
minute for the first 3 minutes following the last up-
date, and after that it remains constant at 3.16 miles;
i.e. 10 or 15 minutes after the last update the slow-
deviation will still be 3.16 miles. Suppose now that
the maximum speed V is 1.5. Then the fast-deviation
increases at the rate of 0.5 miles per minute for the
first 4.5 minutes after the last update, and after that
it remains constant at 2.24 miles. O

Consider now the immediate linear update policy.

Proposition 4: Assume that a moving object hav-
ing maximum speed V uses the ail policy, with update
cost C. Assume that at some point in time P.speed =
v, and that point in time is ¢ time units after the
last update. Then the slow-deviation s is bounded by

s < min{zc vt}; the fast-deviation f is bounded by
f<min{% (V—u)t}. Let D = max{v,V —v}. The

t bl

deviation k is bounded by k < mm{%, Dt}. O

Proposition 4 indicates that following an update,
the bound on the slow deviation first increases as
time progresses, starting from 0, and it does so while
% > vt; after point in time ¢, ¢ = 1/2C/v, in the E.ib—
sence of an update, the bound on the slow deviation
decreases as time progresses. Similarly, the bound on
the fast deviation first increases as time progresses,

and 1t does so while % > (V — wv)t, and after point

in time ¢, t = /2C/(V —v), in the absence of an

update, the bound on the fast deviation decreases as
time progresses. This is a surprising positive result.
In contrast, in the delayed linear policy, the bound
on the error first increases, and then it remains fixed.
We shall see in the next subsection that this is an im-
portant difference between the delayed and immediate
policies, to the extent that it makes the immediate
policy superior to the delayed one.

In the dead-reckoning method the bound on the
error is fixed, 1.e. it does not change as time following
an update progresses.

Example 1 (continued): As before, the cost
for a 1-mile deviation is 1 cent per minute, C' = 5,
P.speed = 1, and V = 1.5. Suppose that the moving
object is using the immediate linear update policy.

Then, the bound on the slow-deviation increases at
the rate of 1 mile per minute for the first 3 minutes
following the last update, and after that it decreases,
ie. fort > 4, it is 10/t. The fast-deviation increases
at the rate of 0.5 miles per minute for the first 4.5 min-
utes after the last update, and after that it decreases,
e for¢ >5,itis 10/t. O

One last comment for this section 1s that if a user
is dissatisfied because the bound on the deviation is
too large, the DBMS can always (for a price?) con-
tact a moving object to get its exact position. In other
words, this paper addresses the processing of regular
queries, i.e. ones for which the uniform deviation cost
function applies; for priority queries, special process-
ing is still available.

3.4 Update policies simulation

In this subsection we report on the simulation anal-
ysis of the two policies discussed previously, and a
third, which is similar to the average immediate-
linear policy, except that the predicted speed is the
current one. Specifically, the current immediate-
linear (cil) position-update policy consists of the
quintuple (uniform deviation cost function, update
cost C, immediate-linear estimator function, simple
fitting method, current-speed). As for the ail policy,

the update threshold for the cil policy is vV2aC', and
the deviation bounds are given in proposition 5.

The analysis compares the cost and uncertainty of
the three policies on a set of one-hour trips. Each
trip is represented by a speed-curve, i.e. the actual-
speed of a moving object as a function of time. For
each speed-curve, update policy, and update cost C' we
execute a simulation run that computes the total cost
(a single number) and the average uncertainty (also
a single number) of the policy on the curve for the
given update cost. Then, for each policy, we average
the total cost over all the speed curves, and plot this
average as a function of the update cost ¢'. We do
the same for the average uncertainty and for the total
number of messages.

The results of our simulations are summarized in a
set of plots that quantify, for each policy, the number
of position-update messages, total cost, and average
uncertainty as a function of the message cost. Because
of space limitations we omit these plots. However,
they indicate that the ail policy is superior to the other
policies.

4 Query processing and indexing of

position attributes

The objective of the discussion in this section 1s to
enable answering spatial (range) queries on the posi-
tion attribute, i.e. queries of the form () = “Retrieve
the objects whose current position is in the polygon
P”. The problem is to evaluate such queries in sublin-
ear time, i.e. without examining all the objects. The
problem with a straight-forward use of spatial index-
ing for this purpose is that since objects are continu-
ously moving, the spatial index has to be continuously
updated, an unacceptable solution. In subsection 4.1
we formulate a 3-dimensional geometric representation
of this retrieval problem. This will enable us to use

spatial indexing, and we specify how to do so in sub-
section 4.2.

4.1 Retrieval as intersection of
3-dimensional objects
In this subsection we represent the problem of re-
trieval based on position attributes as a problem of in-
tersection of geometric objects in 3-dimensional time-
space. This time-space consists of the x and y spatial
coordinates; with the third coordinate being time, ¢.

4.1.1 Geometric representation of the posi-
tion attribute

We show here how we construct a plane, called the
o-plane, for a given value of the position attribute of
a moving object o. Specifically, given values for the
position subattributes of o, the position of o is mod-
eled by two functions of time. One function, called
upper-o and denoted u(t), represents the upper bound
on the distance of the object from the starting posi-
tion (P.z.startposition, P.y.startposition). In order
to define u(t), denote by BF(t) the bound on the
fast-deviation; depending on the position-update pol-

icy, BF(t) is either min{ /2(V —v)C,(V — v)t} or
mm{%, (V — v)t} (see propositions 3 and 4. If we
denote P.speed = v, the define u(t) = vt + BF (1)
where ¢ is the number of time units since P.starttime.
Since the object moves on a piecewise linear route,
the # and y coordinates corresponding to a u(t) dis-
tance from the starting position can be easily com-
puted for any ¢t > 0. Denote by U(z,y,t) the line in
3-dimensional space defined as follows. Ul(z,y,t) is
the set of points that satisfy: z,y 1s at route-distance
u(t) from the starting position (P.z.startposition,
P.y.startposition).

The other function, called lower-o and denoted {(?),
represents the lower bound on the distance of the
object from the starting position (P.z.startposition,
P.y.startposition). Denote by BS(t) the bound on
the slow-deviation; depending on the position-update
policy, BS(t) is either min{v/2vC vt} or min %, vt}
(see propositions 2 and 4). If we denote P.speed =
v, then define I(t) = vt — BS(t) where t is the
number of time units since P.starttime. Denote by
L(xz,y,t) the line in 3-dimensional space defined as
follows. L(z,y,t) is the set of points that satisfy:
z,y is at route-distance {(¢) from the starting position
(P.z.startposition, P.y.startposition).

The uncertainty interval of o at time ¢ > 0 is the
line segment constituting the route between the points
[(t) and u(t). Intuitively, as far the the DBMS knows,
at time ¢ the moving object o can be at any point in
the uncertainty interval, and nowhere else. Let GG be
some polygon in 2-dimensional space. We say that
moving object o may be in G at time ¢ > 0 if the
uncertainty interval of o at time ¢ intersects G. We
say that moving object o must be in G at time ¢ > 0 if
the uncertainty interval of o at time ¢ lies in GG in its
entirety.

Let us define the o-plane to be the plane in 3-
dimensional space which is bounded on one side by the

we use a 3-dimensional spatial index, e.g. an RT-tree
o-piane(see [5] for a survey of spatial access indexes). Spatial
_indexes use a hierarchical recursive decomposition of
" space, usually into rectangles.

The index is updated whenever a position-update
is received from a moving object 0. Assuming that the
update 1s received at time t, the update is processed
as follows. Let pl be the old o-plane, i.e. the o-plane
starting at time ¢, and defined based on the old value
of the position attribute. Let p2 be the new o-plane,
i.e the o-plane starting at time ¢, and defined based
on the newly received value of the position attribute,
Then the id of o is removed from the 3-dimensional
rectangles of the index that intersect pl, and it is in-
serted in the 3-dimensional rectangles that intersect
p2. Observe that if there is an upper limit 7 < T on
the time when o’s trip will end, then pl and p2 can be
cut off at time 7.

Now consider the query “Retrieve the objects which
are inside the polygon GG at time ¢3”, where G is a

to

0 t

Figure 2: Object O is traveling along the y axis.
(y0,y1) is the uncertainty interval at time t. The query
q (represented by the solid line interval) is: retrieve
the objects which at time t0 are at x=0 between y2
and y3.

line L(z,y,t) and on the other by the line U(x, y,1).
In other words, the o-plane is the set of uncertainty
intervals of o, one uncertainty interval for each time
unit ¢ > 0. See Figure 2 for an example of an o-plane,
where the route is the y axis, i.e. the function z = 0.

4.1.2 Geometric representation of queries

Consider the query Q="Retrieve the objects which are
inside the polygon G at time #,”, where (G is a polygon
in 2-dimensional space. For time g, denote by Rg(to)
the set of 3-dimensional points (z,y,t0) where z,y is
in . Intuitively, Rg(to) is the polygon G at time ty.
It can be shown that:

Theorem 5: A moving object 0 may be in polygon
G at time tp if and only if Rg(tg) intersects the o-
plane.

Theorem 6: A moving object o must be in polygon
G at time tp if and only if Rg(tg) intersects the o-
plane, and both points L(x,y,t0) and U(x,y, %) are
n RG (to).

Thus the answer to the query) consists of the set
S of objects that may be in G, together with a subset
of S consisting of the objects that must be in G.

4.2 Use of spatial indexing

For each position attribute of an object class we
establish a 3-dimensional space consisting of the 2-
dimensional geographic area of interest, and of a time
span, T. The specific geographic area (e.g. metropoli-
tan Chicago) and the time span (e.g. one day) depend
on the application and on performance considerations
that we intend to study in future work. When the
geographic area and the time span are determined,

time holygon in 2-dimensional space. ¢ may be the current
time, or some time in the future. Then, using the
index, we retrieve the 3-dimensional rectangles that
intersect Rg(tg). This can be done in sublinear time.
For each object id o in these rectangles we compute
its uncertainty interval s at time ty. If s is contained
in its entirety in (G, then the object o0 is in G at time
tg. If s 1s partly in G and partly outside (7, then the
object o maybe in (G at time ¢y, or it may be outside G.
Otherwise the object o is definitely outside G. Observe
that although Rg(to) intersects a rectangle F, it does
not necessarily intersect the o-plane of every object o
stored in F. Thus, there may be objects in £ that at
time tg are outside G.
5 Comparison to relevant work
We do not believe that the problems we addressed
in this paper, namely position-update policies for mov-
ing objects and their cost and imprecision, have been
studied before in the same context. Furthermore, the
paper does not seem to fit neatly into an established
field of research. Nevertheless, some research areas
are relevant to the present work. One relevant re-
search area is uncertainty in databases (see [3, 1] for
surveys). However, as far as we know this area has so
far addressed different issues than the ones in this pa-
per. Existing works are concerned with management
and reasoning with uncertainty, after such uncertainty
is introduced in the database. Our current paper ad-
dresses the question: what uncertainty/deviation to
initially associate with the location of each moving
object? Other relevant research areas are temporal
databases ([10]), and spatial databases (see [6] for a
survey). Research in these areas can be used to de-
velop languages to query the position attributes. For
example, temporal and spatial query languages can be
adapted to express queries such as: where will the he-
licopters be in 10 minutes. In this paper we addressed
the questions how and when to update the position
attributes.
Another relevant area is constraint databases (see
[2] for a survey). In this sense, our position attributes
can be viewed as a constraint, or a generalized tuple,

such that the tuples satisfying the constraint are con-
sidered in the database. Constraint databases have
been separately applied to the temporal domain, and
to the spatial domain. Constraint databases can be
used as a framework in which to implement the pro-
posed update policies.

Finally, in our earlier work ([8]) we introduced dy-
namic attributes, which are somewhat similar to posi-
tion attributes in the sense that they change continu-
ously as a function of time. However, that paper dealt
mainly with query languages for dynamlc attributes;
the main topics of this paper, i.e. position update
policies, imprecision, and error-bounds, have not been
discussed there. Also the indexing method we intro-
duced in this paper is designed to handle imprecision,
and is different from the method in [8]. Furthermore,
using dynamic attributes for moving objects necessi-
tates representing the z coordinate of an object as
one dynamic attribute, and the y coordinate as an-
other. However, this may be unsatisfactory if the ob-
ject is moving along a winding route. In this case
the speed along each coordinate may change very fre-
quently (since changes in the direction of the motion
vector result in changes in the projection of the motion
vector on each one of the coordinates), necessitating
frequent updates, even if the vehicle’s speed remains
constant.

6 Conclusion

In this paper we considered databases that model
the location of objects moving on routes. These
databases are expected to become common in military
and transportation systems. We addressed three prob-
lems: first, bounding the position-uncertainty, i.e. the
uncertainty of a reply to a query that retrieves the po-
sition of a particular moving object; second, reducing
the position-update cost; and third, efficient retrieval
of objects based on the current or future position.

We proposed the modeling of moving objects us-
ing position attributes; and have shown by simulation
that this approach reduces the position update over-
head by 85%. We formulated the database-position
update problem as a mathematical cost optimization
problem using the concept of a position-update policy,
i.e. a quintuple (deviation cost function, update cost,
estimator function, fitting method, predicted speed).
Such a policy is adaptive and predictive in the sense
that the update time-points depend on the current
and predicted behavior of the deviation (of the actual
position from the database position) as a function of
time. Then we devised and analyzed three position
update policies. We showed that the DBMS is able
to bound the uncertainty at any point in time. Actu-
ally, for two of the policies (the immediate ones) the
position-uncertainty decreases as time-since-the-last-
update increases.

An alternative to our approach is to define a priori
a bound B on the deviation, with a policy in which
the moving object sends a position update message
when the deviation exceeds B. The problem with this
approach is that it is quite unlikely that B is totally
independent of the update message cost.

Then we considered range queries on position at-
tributes, 1.e. queries that retrieve all the objects that
are in a particular region at a particular time. We
proposed a geometric formulation of such queries in
3-dimensional time-space. This formulation enables
the processing of these queries in sublinear time, us-
ing spatial indexing.

We believe that as the world becomes a more dy-
namic place, as geographic distances are shrinking and
remote locations of the globe become more accessi-
ble, and as new applications are developed, location-
databases will become increasingly important. Much
remains to be done in order to make these real-time
databases a commercial reality. We intend to extend
the present work by studying other update policies,
building a simulation testbed to evaluate the perfor-
mance of these policies, developing query languages
and user interfaces for these databases, studying in-
dexing, imprecision/uncertainty, distribution and data
allocation in these databases.

References

[1] S. Abiteboul, R. Hull, V. Vianu, Foundations of
Databases, Addison Wesley, 1995.

[2] P. Kanellakis, Constraint programming and
database languages, ACM Symposium on Princi-
ples of Database Systems, May 1995.

[3] A. Motro, P. Smets, Uncertainly Management
Information Systems, From Needs to Solutions,
Kluwer Academic Publishers, 1997.

[4] R. Snodgrass and I. Ahn, The temporal databases,
IEEE Computer, Sept. 1986.

[5] H. Samet, The design and analysis of spatial dala
structures, Addison Wesley, 1990.

[6] H. Samet, W.G. Aref, Spatial Dala Models and
Query Processing, In Modern Database Systems,
Won Kim ed.; Addison Wesley, 1995.

[7] S.D. Silvey, Statistical Inference, Chapman and
Hall, 1975.

[8] P. Sistla, O. Wolfson, S. Chamberlain, S. Dao,
Modeling and Querying Moving Objects, to appear,
Proceedings of the Thirteenth International Con-

ference on Data Engineering (ICDE13), Birming-
ham, UK, Apr.97.

[9] R. Snodgrass and I. Ahn, The temporal databases,
IEEE Computer, Sept. 1986.

[10] A. Tansel, J. Clifford, S. Gadia, S. Jajo-
dia, A. Segev,R. Snodgrass,editors, Temporal
Databases: Theory, design, and Implementation,
Benjamin/Cummings, 1993.

