
Cost and Imprecision in Modeling the Position of Moving Objects�Ouri Wolfsony Sam Chamberlainz Son Daox Liqin Jiang{ Gisela MendezkAbstractConsider a database that represents the location ofmoving objects, such as taxi-cabs (typical query: re-trieve the cabs that are currently within 1 mile of 33Michigan Ave., Chicago), or objects in a battle-�eld.Existing database management systems (DBMS's) arenot well equipped to handle continuously changingdata, such as the position of moving objects, since datais assumed to be constant unless it is explicitly modi-�ed.In this paper we address position-update policiesand imprecision. Namely, assuming that the actualposition of a moving object m deviates from the posi-tion computed by the DBMS, when should m updateits position in the database in order to eliminate thedeviation? Furthermore, how can the DBMS provide abound on the error (i.e. the deviation) when it repliesto a query: what is the current position of m? Wepropose a cost based approach to update policies thatanswers both questions. We develop several updatepolicies and analyze them theoretically and experimen-tally.1 IntroductionConsider a database that represents the location ofmoving objects. For example, for a database repre-senting the location of taxi-cabs a typical query maybe: retrieve the free cabs that are currently within 1mile of 33 N. Michigan Ave., Chicago (to pick-up acustomer); or for a trucking company database a typ-ical query may be: retrieve the trucks that are cur-rently within 1 mile of truck ABT312 (which needsassistance); or for a database representing the currentposition of objects in a battle�eld a typical query maybe: retrieve the friendly helicopters that are currentlyin a given region. The database may be either cen-tralized or distributed, and the queries may originatefrom the moving objects, or from stationary users.To manage such databases by a traditionaldatabase management system (DBMS) would meanyDepartment of Electrical Engineering and Computer Sci-ence, University of Illinois, Chicago, IL 60607zArmy Research Laboratory, Aberdeen Proving Ground,MDxHughes Research Laboratories, Information Sciences Labo-ratory, Malibu, CA{Department of Electrical Engineering and Computer Sci-ence, University of Illinois, Chicago, IL 60607kCentral University of Venezuela�This research was supported in part by Grants NSF IRI-9408750, DARPA N66001-97-2-8901, NATO CRG-960648, ARLDAAL01-96-2-003, and a gift from Hughes Research Labs.

that the moving objects (e.g. vehicles) have to contin-uously send to the database updates of their positionvia a wireless communication link. 1 Frequent up-dating may be expensive in terms of dollar-cost, orperformance and wireless-bandwidth overhead. Alter-natively, if position updates are infrequent, then theanswer to position queries is outdated, i.e. imprecise;this in turn may involve a penalty cost in terms of in-correct decision-making. One of the contributions ofthis paper is to establish the update frequency as afunction of the ratio between the update cost and theimprecision-in-answering-queries cost. Namely, theupdate frequency increases as the imprecision cost in-creases, and it decreases as the update-cost increases.Furthermore, we propose a technique to drasticallyreduce the update cost. Speci�cally, we propose tomodel the current position of a moving object as thedistance from its starting position, along a given route.The distance continuously increases as a function oftime, without being updated. So, for example, theDBMS knows that the moving object m started at5pm at position (x0; y0) on a given route known tothe DBMS, and it travels at 60 miles/hour; thus, atany point in time after 5pm, in response to a query, theDBMS can easily compute the current position of m.Our simulation experiments show that this techniquereduces the number of updates to 15% of the num-ber used by the traditional, nontemporal method; thissaves 85% of the bandwidth and update-processingoverhead.In the context of position attributes that changecontinuously with time, the main issues we addressin this paper are position-update policies and impre-cision. Namely, assuming that the actual position ofm deviates from the position computed by the DBMS(namely the database position) due to the fact thatm does not travel continuously at exactly 60 mi/hr,how frequently should m update its position in thedatabase in order to eliminate the deviation? Fur-thermore, how can the DBMS provide a bound on theerror (i.e. the deviation) when it replies to a query:what is the current position of m?We propose the following cost based approach toupdate policies. We postulate that there is a givencost for each unit of deviation (i.e. imprecision), andthere is a given cost of a database update. Then, at1We assume that at any point in time each vehicle knowsits exact current position, using, for example, an onboard Ge-ographic Positioning System (GPS). Position-update messagescan be carried through wireless data communication channels,e.g. those provided by cellular data communication companiessuch as RAM Mobile Data Co., satellite systems such as Irid-ium, and multihop radio networks.



any point in time a moving object approximates thedeviation by curve �tting, using a simple estimatorfunction of time. The estimator function is used topredict the future deviation assuming that the movingobject sends now a database position update, and alsoto predict the future deviation in the absence of sucha message. An update is sent if the di�erence betweenthe deviation-costs exceeds the update cost. Then,an update policy for a moving object m consists of: adeviation cost function, an update cost, an estimatorfunction, a �tting method, and a predicted speed. Thedeviation cost function is the cost of imprecision inanswering queries. The estimator is a simple functionused to approximate the deviation as a function oftime. For example, a possible estimator is the functionf(t) = at, where a is a constant and t is the number oftime units since the last update. The �tting methodis the method used to approximate the deviation bythe estimator, e.g. for the function f(t) = at it isthe method of computing the constant a based on thedeviation. The update speed is the speed declared tothe database in the update, e.g. the current speed, orthe average speed since the last update.In this paper we introduce, analyze, and evaluateby simulation three update policies. Furthermore, weshow that if the DBMS knows the update policy usedby a moving object m, then it can compute at anypoint in time t a bound B on the deviation of m fromits database position. B is the uncertainty in responseto the following query entered at time t: what is thecurrent position of m? In other words, the actual po-sition of m may deviate from the position returned bythe DBMS by at most B. Our simulations comparethe three update policies in terms of total cost anduncertainty.Then we address the indexing of position attributes.The objective is to enable the DBMS to answer insublinear time, i.e. without examining all the objects,range queries of the form: retrieve the moving ob-jects that are currently in a given polygon P . Theproblem with a straight-forward use of spatial index-ing is that since objects are continuously moving, theposition continuously changes, and thus the spatialindex has to be continuously updated, an unaccept-able solution. The indexing method that we proposeavoids this problem by representing the range of cur-rent possible positions of a moving object as a planein 3-dimensional time-space. Then, the processing ofqueries on the position attribute is translated into theproblem of intersection of geometric bodies in thistime-space. The indexing method enables the retrievalof both, moving objects that "must be" in P , and mov-ing objects that "maybe" in P . The method uses ourresults concerning the uncertainty of each object ateach point in time.In summary, the contributions of this paper are asfollows:� We quantify the database update frequency as afunction of the ratio between the update cost andthe imprecision cost.� We introduce the concept of update policies tobe used by a moving object to determine when to

update its database position, and what should bethe update values.� We introduce, analyze, and evaluate by simula-tion three update policies.� We show that for each one of the above policiesthe DBMS can obtain a reasonable bound on theerror (i.e. the deviation of the database positionfrom the actual position).� We introduce a method of indexing position at-tributes, i.e. attributes whose value changes con-tinuously as a function of time;The rest of the paper is organized as follows. Insection 2 we introduce the position-attribute concept.In section 3 we discuss imprecision, introduce threeupdate policies and their error bounds, and evaluatethem by simulation. In section 4 we introduce ourindexing method. In section 5 we compare our workto relevant research, and in section 6 we conclude witha discussion of our results.2 Position attributesA database is a set of object-classes. An object-classis a set of attributes. Some object-classes are desig-nated as spatial. Each spatial object class is either apoint-class, a line-class, or a polygon-class.Point object classes are either mobile or station-ary. A point object class O has a position attributeP . If the object class is stationary, its position at-tribute has two sub-attributes P:x, and P:y, represent-ing the x and y coordinates of the object. If the objectclass is mobile, its position attribute has seven sub-attributes, P:starttime, P:route, P:x:startposition,P:y:startposition, P:direction, P:speed, and P:policy.The semantics of the sub-attributes are as follows.P:route is (the pointer to) a line spatial object indi-cating the route on which an object in the class O ismoving. 2 We assume that the database stores a setof routes, and at any point point in time each objectmoves along a unique route from the route database.P:x:startposition and P:y:startposition are the x andy coordinates of a point on P:route; it is the positionof the moving object at time P:starttime. In otherwords, P:starttime is the time when the moving objectwas at position (P:x:startposition, P:y:startposition).We assume that whenever a moving object updatesits P attribute it updates the P:x:startposition andP:y:startposition subattributes; thus P:starttime isalso the time of the last position-update. We assumein this paper that the database updates are instanta-neous, i.e. valid- and transaction- times (see [9]) areequal. Therefore, P:starttime is the time at which theupdate occurred in the real world system being mod-eled, and the time when the database installed the up-date. P:direction is a binary indicator having a value0 or 1 (these values may correspond to north-south, oreast-west, or the two endpoints of the route). P:speed2For simplicity, our discussion pertains to routes in 2-dimensional space, but our concepts and results can be extendedto routes in 3-dimensional space.



is a linear function of a single variable t that has value0 at t = 0. It indicates the speed of the moving object.P:policy indicates the position-update policy used bythe moving object. Position-update policies are dis-cussed in section 3. At this point we will just mentionthat the bound on the error in computing the currentposition of a moving object depends on the policy, thusthis information can be derived from the P:policy sub-attribute.We de�ne the route-distance between two points ona given route to be the distance along the route be-tween the two points. Assuming that the route is givenby a piece-wise linear function, it is straightforward tocompute the route-distance between two points on theroute, and the point at a given route-distance fromanother point. The database position of a moving ob-ject at a given point in time is de�ned as follows. Attime P:starttime the database position is the pair(P:x:startposition, P:y:startposition); the databaseposition at time A:starttime + t0 is the point on theroute P:route which is at route-distance P:speed � t0from the point with coordinates (P:x:startposition,P:y:startposition). Intuitively, the database positionof a moving object at a given point in time t is theposition of the object as far as the DBMS knows; it isthe position that is returned by the DBMS in responseto a query entered at time t. As we shall see in thenext section, the under certain conditions DBMS willalso be able to provide a bound on the error, i.e. thedi�erence between the actual position of the objectand its database position.3 Modeling imprecisionThis section is divided into four subsections. Insubsection 3.1 we introduce the concept of a databaseupdate policy for a moving object. In subsection 3.2we discuss two particular update policies, the delayed-and immediate- linear. In section 3.3 we derive errorbounds for these policies, i.e. bounds on the error ofan answer to a query of the form: retrieve the currentposition of moving object m. In section 3.4 we intro-duce the third update policy, describe the simulationsetup, and discuss the simulation results.3.1 Database update policiesWe assume that at the beginning of the trip themoving object writes all the sub-attributes of the po-sition attribute. Subsequently, the moving objectperiodically updates its current position and speedstored in the database. Speci�cally, a position up-date is an update sent by the moving object to thedatabase; it consists of values for at least the sub-attributes P:starttime, P:speed, P:x:startpositionand P:y:startposition. If during the trip the objectchanges its route, then it sends a position update mes-sage that includes the identi�cation of the new routeto be stored in P:route. If we de�ne the route distancebetween two points on di�erent routes to be in�nite,then this will trigger a position update whenever theobject changes routes; we will not elaborate on thisfurther.A position update policy is a position-update pre-scription for a moving object. It states when the mov-ing object updates its position in the database, and

what are the update values. We propose a cost-basedapproach to update policies. Formally, a position-update policy of the moving object is a quintuple (de-viation cost function, update cost, estimator function,�tting method, predicted-speed). For the rest of thissubsection we de�ne and discuss the components ofthe position update policy.Since between two consecutive position updates themoving object does not travel at exactly the speedP:speed, the actual position of the moving object de-viates from its database position. Formally, the devi-ation d at a point in time t, denoted d(t), is the route-distance between the moving object's actual positionat time t and its database position at time t. The devi-ation is always nonnegative. Note that at any point intime the moving object knows its current position, andit knows the parameters of the last position-update.Therefore at any point in time the (computer onboardthe) moving object can compute the current deviation.The cost of the deviation between two time pointst1 and t2 is given by the deviation cost function, de-noted COSTd(t1; t2); it is a function of two variablesthat maps the deviation between the time points t1and t2 into a nonnegative number. For example, sup-pose that the penalty for each unit of deviation re-ported in response to a query is 1; and on average,there is one query that retrieves the position of themoving object per time unit. Then, the cost of a unitof deviation per unit of time is one, and the cost ofthe deviation between two time points t1 and t2, is:COSTd(t1; t2) = Z t2t1 d(t)dt (1)We call the function of equation 1 the uniform devia-tion cost function.In this paper we consider only update policies thathave the uniform deviation cost function. However,there exist other deviation cost functions. For exam-ple, the step deviation cost function carries a zero-penalty for each time unit in which the deviation staysbelow some threshold h, and a penalty of one other-wise.The update cost, denoted C, is a nonnegative num-ber representing the cost of a position-update sentfrom the moving object to the database. The updatecost may di�er from one moving object to another,and it may vary even for a single moving object dur-ing a trip, due for example, to changing availabilityof bandwidth. The update cost must be given in thesame units as the deviation cost. In particular, for theuniform deviation cost function, C is the ratio betweenthe update cost, and the cost of a unit of deviationper unit of time. For example, the cost of a wirelessmessage using one of the wireless data transmissionservices (e.g. RAM mobile data Co. or ARDIS Co.)is 5 cents. Thus, if the the cost of a unit of deviationper unit of time is one cent, then C = 5.Let t1 and t2 be the time-stamps of two consecutiveposition updates. Then the position update policytakes the total cost between t1 and t2 to be:COST (t1; t2) = C +COSTd(t1; t2) (2)



The estimator function (see [7]) is a "well-behaved"function f(t) by which we approximate the current de-viation, i.e. the deviation at any time unit since thelast update; we restrict f(0) = 0 because the updateincludes the current position of the moving object, andtherefore, zero time units after the update the devia-tion is zero. For example, given a deviation d(t) for0 � t � currenttime, the estimator can be the linearfunction f(t) = a � t.The �tting method is the method of determining thecoe�cients of the estimator function based on d(t).For example, for the estimator f(t) = at, a �ttingmethod is to compute a as the ratio between the cur-rent deviation and the number of time units since thelast update. This means that if at time point t0 thedeviation d(t0) = k, d(t) is estimated by the straightline l, where the slope of l is a = kt0 .The predicted-speed is the speed that will be storedin the subattribute P:speed at each update. It rep-resents the speed of the moving object following theupdate. One possible value for the predicted speedis the current speed of the moving object, another isits average speed since the last update, and yet an-other is the average speed since the beginning of thetrip. These values are based solely on the past. How-ever, the moving object may also be able to estimatethe future speed based on known tra�c patterns, orbased on a priori knowledge of the upcoming terrain,or based on input from the user.At any point in time t0, using the update policy,the moving object decides whether or not to send adatabase update. It does so as follows. Assume thatat time t0 the deviation is k. Using the estimatorfunction and the �tting method, it approximates thecurrent deviation by a function g(t) of the numberof time units elapsed since the last update. Then itassumes that the future deviation, i.e. the deviationt time units after t0, is given by either: a) g(t) if anupdate is sent at time t0, or b) g(t) + k if an updateis not sent at time t0. For example, let t0 be thenumber of time units that currently elapsed since thelast update. Suppose that the deviation at time t0is k, i.e. d(t0) = k, and the estimator function isf(t) = at where a = kt0 . If the moving object does notupdate the database at time t0, then it is assumed thatt time units after t0 the deviation will be kt0 � t+ k. Ifthe moving object does update the database at timet0, then it is assumed that t time units after t0 thedeviation will be kt0 � t.Now, using the deviation cost function and the up-date cost, the moving object can compute whether ornot t0 is an optimal update point; namely, if an up-date at time t0 minimizes the total cost under theseassumptions. Exactly how to determine whether ornot t0 is an optimal update point will be shown inthe next subsection for an estimator function that isslightly richer than l.Clearly, there is an in�nite number of update poli-cies, one for each combination of the quintuple compo-nents. Observe that, since the update policy is a po-sition subattribute, each position update may change

0 b

a a
threshold
update

timet+b

deviation

 t 
update
point

2t
update
pointFigure 1: The deviation as a delayed linear functionthe policy. One reason to change the policy on an up-date is that the most appropriate policy may be di�er-ent for di�erent speed patterns. For example, a policyfor which the predicted speed is the current speed maybe appropriate for highway driving in nonrush hour(when the speed 
uctuates only mildly), whereas apolicy for which the predicted speed is the averagespeed may be appropriate for city driving, where thespeed 
uctuates sharply. The pattern of the currentspeed is a parameter that may be entered by the user,and changed during a trip.3.2 The delayed and immediate linear up-date policiesWe will use the delayed linear function, de�nednext, as the estimator function. A delayed linear func-tion f is a function having the following formula.f(t) = � a(t� b) if t � b0 if 0 � t < bwhere a; b are non negative constants. b is called thedelay of f , and a is called the slope of f .The rationale for this estimator function is thefollowing. In each update the object sends to thedatabase its current position and current speed toupdate its (P:x:startposition, P:y:startposition) andP:speed sub-attributes respectively. Taking the devi-ation to be a delayed linear function means that fol-lowing an update, the deviation is 0 for b units of time(in other words, the moving object continues at thedeclared speed for b time units), and then it startsincreasing at a rate of a, i.e. according to a linearfunction whose slope is a. In other words, after btime units it starts moving at a speed v, such thata = jv � P:speedj. Thus, d(t) has a delay of b and aslope of a.Assume that for given a and b numbers, the devia-tion of a moving object following each database updateis a delayed linear function with delay b and slope a.Then each update occurs when the deviation reachesthe same value. Let the update threshold be that value,i.e. the value of the deviation for which the movingobject updates the database (see �g. 1). Let the opti-mal update threshold, denoted ka;bopt, be the value of theupdate threshold for which the total cost per time unitis minimized. In other words, the total cost per timeunit is minimized when the moving object updates thedatabase each time the deviation reaches the optimalupdate threshold.



Proposition 1: Let a and b be nonnegative num-bers. Assume that following each database updatethe deviation of a moving object is a delayed lin-ear function with delay b and slope a. Assume thatthe update cost is C. Then, for the uniform de-viation cost function, the optimal update thresholdka;bopt = pa2b2 + 2aC � ab.Example 1: Some real-world values of the vari-ables in the optimal update threshold are as follows.Assume that the cost for a 1-mile deviation is 1 centper minute, and C = 5. Suppose that a vehicle sets itsspeed on a route to be 1 mile per minute (60 mi/hr).Suppose further that the vehicle travels at that speedfor 2 minutes, and then it stops (i.e. the delay is 2)in a tra�c jam. Stopping increases the vehicle's de-viation at a rate (slope) of 1 mile per minute. Then,pa2b2 + 2aC � ab = 3:74� 2 = 1:74. Namely, if thevehicle uses the delayed linear policy, it will send adatabase update when its deviation is 1.74 miles, i.e.after it has been stopped for one minute and 44 sec-onds. 2Now, the deviation will not always be a delayed-linear function. Therefore, we will use a delayed-linearfunction as an estimator of the deviation. The �ttingmethod used to evaluate the slope and deviation atany point in time is called the simple �tting methodand is de�ned as follows. At any point in time, thedelay b is the number of time units from the last up-date until the last time unit when the deviation was 0.The slope a is the ratio between the current deviationand t � b, where t is the time elapsed since the lastupdate.The delayed-linear (dl) position-update policy isthe quintuple (uniformdeviation cost function, updatecost C, delayed-linear estimator function, simple �t-ting method, current-speed). Then, based on proposi-tion 1, the moving object updates the database when-ever the deviation reaches ka;bopt = pa2b2 + 2aC � ab.Intuitively, the delayed-linear position update pol-icy behaves as follows. At any point in time themoving object computes the current deviation, k; ifk = 0, then the moving object does not do anything,i.e. it does not consider a position-update. Other-wise it computes the delay b and the slope a as fol-lows. b is the number of time units from the lastupdate until the last time unit when the deviationwas 0; and if we denote by t the number of timeunits elapsed since the last update, then a = kt�b(clearly, since the current deviation is not 0, t�b > 0).Now, if k � pa2b2 + 2aC � ab, then the moving ob-ject updates the database with the current positionand current speed; i.e. it places its current positionin the P:x:startposition and P:y:startposition subat-tributes, and its current speed in the P:speed subat-tribute.Observe that the delay and slope may change fromone update-to-update period to another. By updat-ing at the current optimal update threshold, i.e. thethreshold for the current delay and slope, the movingobject makes the implicit assumption that the currentdelay and slope will persist for the next update-to-

update period. In other words, if an update-to-updateperiod is a window, then the parameters of the cur-rent window are projected onto the next window. Thisparadigm, i.e. the assumption that the recent past isindicative of the near future, is common in computerscience, as evidenced by many resource allocation poli-cies (e.g. the LRU page replacement strategy).To motivate the next update policy assume thatat each update, the moving object does not send itscurrent speed, but its average speed since the lastupdate. This makes sense when the current speedchanges rapidly (as in stop-and-go city driving), butthe average speed is stable. Since the average speedmost likely is di�erent than the current speed, thedeviation will start increasing immediately. Thus, an-other estimator function that we consider in this paperis the immediate linear: it is the delayed linear func-tion with a delay of 0. Namely, the immediate linearfunction has the formula f(t) = at for t � 0.The average immediate-linear (ail) position-update policy consists of the quintuple (uniform devi-ation cost function, update cost C, immediate-linearestimator function, simple �tting method, average-speed). Then, based on proposition 1, the movingobject updates the database whenever the deviationreaches ka;0opt = p2aC.Intuitively, the average immediate-linear updatepolicy behaves as follows. At any point in time themoving object computes the current deviation, k; ifk = 0, then the moving object does not do anything.Otherwise it computes the slope a as a = kt , where tis the number of time units elapsed since the last up-date. (In other words, it is approximated that if thedeviation increased from 0 to k since the last positionupdate, in the absence of an update at the currenttime, the deviation will continue to increase at thesame rate; if an update is sent, then the deviation willincrease at the same rate starting from 0). Then, ifk � p2aC the moving object updates the database byplacing its current position in the P:x:startpositionand P:y:startposition subattributes, and its averagespeed since the last update in the P:speed subat-tribute.Now, we will make a few observations. First, itis easy to see that for given positive a and b, ka;bopt =pa2b2 + 2aC � ab � pa2b2+p2aC � ab = ka;0opt. Thismay seem to indicate that if b > 0, i.e. if the movingobject continues at the current speed after the update,then the threshold for the delayed linear policy is lowerthan that for the average immediate linear; which inturn indicates that the delayed linear policy performsmore updates. However, this is deceiving. One reasonfor this is that the delayed policy updates P:speedwiththe current speed, which is usually di�erent than theaverage speed used by the immediate policy. There-fore the deviation function for the two policies di�ers.What if we consider the current immediate-linearposition-update policy that is similar to the averageimmediate-linear, except that the speed used in theupdate is the current rather than the average? (Weanalyze the cil policy in section 3.4). Even then, for



a given deviation function d(t), the slope a is kt�b forthe delayed linear policy, and kt for the average imme-diate linear policy. It can be shown that the numberof updates under the two policies is incomparable ingeneral.Second, consider the average immediate policy. Itis easy to see that since a = kt , k � p2aC if and onlyif k � 2Ct . Thus, for the simple �tting method:ka;0opt = 2Ct (3)where t is the number of time units elapsed since thelast update. Therefore, ka;0opt decreases as time passeswithout an update. This means that, assuming thatthe deviation decreases slower than time increases, themoving object may generate a position update whilethe deviation is decreasing.3.3 Threshold boundsFor each moving object in the database the DBMSknows the update policy at any point in time. Con-sider a particular moving object o. If o uses the imme-diate or delayed update policies, then at any point intime the DBMS can compute the current database po-sition of o. However, the actual position of o may de-viate from its database position by the optimal updatethreshold. At any point in time the optimal updatethreshold depends on the current slope (and delay),which are unknown to the DBMS. Thus the DBMScannot compute the the actual position of o. Nev-ertheless, the DBMS can determine a bound on thecurrent deviation of o; in this subsection we show howit can do so.Remember that the deviation d(t) is the route-distance of the vehicle's actual position from itsdatabase position. If the actual position is closer tothe starting position than the database position, thenwe call the deviation slow (i.e. the object is behindits position as re
ected in the database), otherwise wecall it fast.Proposition 2: Assume that a moving object usesthe delayed linear update policy, with update cost C.Assume that at some point in time P:speed = v.Then, if that point in time is t time units afterthe last update, the slow-deviation k is bounded byminfp2vC; vtg, i.e. k � minfp2vC; vtg. 2Intuitively, proposition 2 bounds how far the actualposition can be behind the database position. Notethat the DBMS can compute this bound based on val-ues it knows, namely, v, C, and t.Assume now that the maximum speed of the mov-ing object during this trip is V , and that the DBMSknows V . V may be determined by the characteris-tics of the vehicle (e.g. it cannot go faster than 120miles per hour), or it can be determined by the ex-pected conditions of the trip (the vehicle will not gofaster than 60 miles per hour during rush hour). Anal-ogously to proposition 2, it can be shown that:Proposition 3: Assume that a moving object hav-ing maximum speed V uses the delayed linear updatepolicy, with update cost C. Assume that at some point

in time P:speed = v. Then, if that point in time is ttime units after the last update, the fast-deviation kis bounded by k � minfp2(V � v)C; (V � v)tg. 2Clearly, at any point in time the deviation is eitherfast or slow. Then, an immediate corollary of propo-sitions 2 and 3 is:Corollary 1: Assume that a moving object hav-ing maximum speed V uses the delayed linear up-date policy, with update cost C. Assume that atsome point in time P:speed = v, and denote D =maxfv; V � vg. Then, if that point in time is t timeunits after the last update, the deviation k is boundedby k � minfp2DC;Dtg. 2Example 1 (continued): As before, the cost fora 1-mile deviation is 1 cent per minute, and C = 5.Suppose that the current database speed (P:speed) is1 (mile per minute), and the moving object is usingthe delayed linear update policy. Then the bound onthe slow-deviation increases at the rate of 1 mile perminute for the �rst 3 minutes following the last up-date, and after that it remains constant at 3.16 miles;i.e. 10 or 15 minutes after the last update the slow-deviation will still be 3.16 miles. Suppose now thatthe maximum speed V is 1.5. Then the fast-deviationincreases at the rate of 0.5 miles per minute for the�rst 4.5 minutes after the last update, and after thatit remains constant at 2.24 miles. 2Consider now the immediate linear update policy.Proposition 4: Assume that a moving object hav-ing maximum speed V uses the ail policy, with updatecost C. Assume that at some point in time P:speed =v, and that point in time is t time units after thelast update. Then the slow-deviation s is bounded bys � minf2Ct ; vtg; the fast-deviation f is bounded byf � minf2Ct ; (V �v)tg. Let D = maxfv; V �vg. Thedeviation k is bounded by k � minf2Ct ; Dtg. 2Proposition 4 indicates that following an update,the bound on the slow deviation �rst increases astime progresses, starting from 0, and it does so while2Ct > vt; after point in time t, t =p2C=v, in the ab-sence of an update, the bound on the slow deviationdecreases as time progresses. Similarly, the bound onthe fast deviation �rst increases as time progresses,and it does so while 2Ct > (V � v)t, and after pointin time t, t = p2C=(V � v), in the absence of anupdate, the bound on the fast deviation decreases astime progresses. This is a surprising positive result.In contrast, in the delayed linear policy, the boundon the error �rst increases, and then it remains �xed.We shall see in the next subsection that this is an im-portant di�erence between the delayed and immediatepolicies, to the extent that it makes the immediatepolicy superior to the delayed one.In the dead-reckoning method the bound on theerror is �xed, i.e. it does not change as time followingan update progresses.Example 1 (continued): As before, the costfor a 1-mile deviation is 1 cent per minute, C = 5,P:speed = 1, and V = 1:5. Suppose that the movingobject is using the immediate linear update policy.



Then, the bound on the slow-deviation increases atthe rate of 1 mile per minute for the �rst 3 minutesfollowing the last update, and after that it decreases,i.e. for t � 4, it is 10=t. The fast-deviation increasesat the rate of 0.5 miles per minute for the �rst 4.5 min-utes after the last update, and after that it decreases,i.e. for t � 5, it is 10=t. 2One last comment for this section is that if a useris dissatis�ed because the bound on the deviation istoo large, the DBMS can always (for a price?) con-tact a moving object to get its exact position. In otherwords, this paper addresses the processing of regularqueries, i.e. ones for which the uniform deviation costfunction applies; for priority queries, special process-ing is still available.3.4 Update policies simulationIn this subsection we report on the simulation anal-ysis of the two policies discussed previously, and athird, which is similar to the average immediate-linear policy, except that the predicted speed is thecurrent one. Speci�cally, the current immediate-linear (cil) position-update policy consists of thequintuple (uniform deviation cost function, updatecost C, immediate-linear estimator function, simple�tting method, current-speed). As for the ail policy,the update threshold for the cil policy is p2aC, andthe deviation bounds are given in proposition 5.The analysis compares the cost and uncertainty ofthe three policies on a set of one-hour trips. Eachtrip is represented by a speed-curve, i.e. the actual-speed of a moving object as a function of time. Foreach speed-curve, update policy, and update cost C weexecute a simulation run that computes the total cost(a single number) and the average uncertainty (alsoa single number) of the policy on the curve for thegiven update cost. Then, for each policy, we averagethe total cost over all the speed curves, and plot thisaverage as a function of the update cost C. We dothe same for the average uncertainty and for the totalnumber of messages.The results of our simulations are summarized in aset of plots that quantify, for each policy, the numberof position-update messages, total cost, and averageuncertainty as a function of the message cost. Becauseof space limitations we omit these plots. However,they indicate that the ail policy is superior to the otherpolicies.4 Query processing and indexing ofposition attributesThe objective of the discussion in this section is toenable answering spatial (range) queries on the posi-tion attribute, i.e. queries of the form Q = \Retrievethe objects whose current position is in the polygonP". The problem is to evaluate such queries in sublin-ear time, i.e. without examining all the objects. Theproblem with a straight-forward use of spatial index-ing for this purpose is that since objects are continu-ously moving, the spatial index has to be continuouslyupdated, an unacceptable solution. In subsection 4.1we formulate a 3-dimensional geometric representationof this retrieval problem. This will enable us to use

spatial indexing, and we specify how to do so in sub-section 4.2.4.1 Retrieval as intersection of3-dimensional objectsIn this subsection we represent the problem of re-trieval based on position attributes as a problem of in-tersection of geometric objects in 3-dimensional time-space. This time-space consists of the x and y spatialcoordinates, with the third coordinate being time, t.4.1.1 Geometric representation of the posi-tion attributeWe show here how we construct a plane, called theo-plane, for a given value of the position attribute ofa moving object o. Speci�cally, given values for theposition subattributes of o, the position of o is mod-eled by two functions of time. One function, calledupper-o and denoted u(t), represents the upper boundon the distance of the object from the starting posi-tion (P:x:startposition, P:y:startposition). In orderto de�ne u(t), denote by BF (t) the bound on thefast-deviation; depending on the position-update pol-icy, BF (t) is either minfp2(V � v)C; (V � v)tg orminf2Ct ; (V � v)tg (see propositions 3 and 4. If wedenote P:speed = v, the de�ne u(t) = vt + BF (t)where t is the number of time units since P:starttime.Since the object moves on a piecewise linear route,the x and y coordinates corresponding to a u(t) dis-tance from the starting position can be easily com-puted for any t � 0. Denote by U (x; y; t) the line in3-dimensional space de�ned as follows. U (x; y; t) isthe set of points that satisfy: x; y is at route-distanceu(t) from the starting position (P:x:startposition,P:y:startposition).The other function, called lower-o and denoted l(t),represents the lower bound on the distance of theobject from the starting position (P:x:startposition,P:y:startposition). Denote by BS(t) the bound onthe slow-deviation; depending on the position-updatepolicy, BS(t) is either minfp2vC; vtg or minf2Ct ; vtg(see propositions 2 and 4). If we denote P:speed =v, then de�ne l(t) = vt � BS(t) where t is thenumber of time units since P:starttime. Denote byL(x; y; t) the line in 3-dimensional space de�ned asfollows. L(x; y; t) is the set of points that satisfy:x; y is at route-distance l(t) from the starting position(P:x:startposition, P:y:startposition).The uncertainty interval of o at time t � 0 is theline segment constituting the route between the pointsl(t) and u(t). Intuitively, as far the the DBMS knows,at time t the moving object o can be at any point inthe uncertainty interval, and nowhere else. Let G besome polygon in 2-dimensional space. We say thatmoving object o may be in G at time t � 0 if theuncertainty interval of o at time t intersects G. Wesay that moving object o must be in G at time t � 0 ifthe uncertainty interval of o at time t lies in G in itsentirety.Let us de�ne the o-plane to be the plane in 3-dimensional space which is bounded on one side by the



t0

y

y

y

query

0

O-plane

L(0,y,t)

U(0,y,t)

2

3

t

y

y

1

0

q

timeFigure 2: Object O is traveling along the y axis.(y0,y1) is the uncertainty interval at time t. The queryq (represented by the solid line interval) is: retrievethe objects which at time t0 are at x=0 between y2and y3.line L(x; y; t) and on the other by the line U (x; y; t).In other words, the o-plane is the set of uncertaintyintervals of o, one uncertainty interval for each timeunit t � 0. See Figure 2 for an example of an o-plane,where the route is the y axis, i.e. the function x = 0.4.1.2 Geometric representation of queriesConsider the query Q=\Retrieve the objects which areinside the polygon G at time t0", where G is a polygonin 2-dimensional space. For time t0, denote by RG(t0)the set of 3-dimensional points (x; y; t0) where x; y isin G. Intuitively, RG(t0) is the polygon G at time t0.It can be shown that:Theorem 5: A moving object o may be in polygonG at time t0 if and only if RG(t0) intersects the o-plane.Theorem 6: Amoving object omust be in polygonG at time t0 if and only if RG(t0) intersects the o-plane, and both points L(x; y; t0) and U (x; y; t0) arein RG(t0).Thus the answer to the query Q consists of the setS of objects that may be in G, together with a subsetof S consisting of the objects that must be in G.4.2 Use of spatial indexingFor each position attribute of an object class weestablish a 3-dimensional space consisting of the 2-dimensional geographic area of interest, and of a timespan, T . The speci�c geographic area (e.g. metropoli-tan Chicago) and the time span (e.g. one day) dependon the application and on performance considerationsthat we intend to study in future work. When thegeographic area and the time span are determined,

we use a 3-dimensional spatial index, e.g. an R+-tree(see [5] for a survey of spatial access indexes). Spatialindexes use a hierarchical recursive decomposition ofspace, usually into rectangles.The index is updated whenever a position-updateis received from a moving object o. Assuming that theupdate is received at time t, the update is processedas follows. Let p1 be the old o-plane, i.e. the o-planestarting at time t, and de�ned based on the old valueof the position attribute. Let p2 be the new o-plane,i.e the o-plane starting at time t, and de�ned basedon the newly received value of the position attribute,Then the id of o is removed from the 3-dimensionalrectangles of the index that intersect p1, and it is in-serted in the 3-dimensional rectangles that intersectp2. Observe that if there is an upper limit Z < T onthe time when o's trip will end, then p1 and p2 can becut o� at time Z.Now consider the query \Retrieve the objects whichare inside the polygon G at time t0", where G is apolygon in 2-dimensional space. t0 may be the currenttime, or some time in the future. Then, using theindex, we retrieve the 3-dimensional rectangles thatintersect RG(t0). This can be done in sublinear time.For each object id o in these rectangles we computeits uncertainty interval s at time t0. If s is containedin its entirety in G, then the object o is in G at timet0. If s is partly in G and partly outside G, then theobject omaybe in G at time t0, or it may be outside G.Otherwise the object o is de�nitely outside G. Observethat although RG(t0) intersects a rectangle E, it doesnot necessarily intersect the o-plane of every object ostored in E. Thus, there may be objects in E that attime t0 are outside G.5 Comparison to relevant workWe do not believe that the problems we addressedin this paper, namely position-update policies for mov-ing objects and their cost and imprecision, have beenstudied before in the same context. Furthermore, thepaper does not seem to �t neatly into an established�eld of research. Nevertheless, some research areasare relevant to the present work. One relevant re-search area is uncertainty in databases (see [3, 1] forsurveys). However, as far as we know this area has sofar addressed di�erent issues than the ones in this pa-per. Existing works are concerned with managementand reasoning with uncertainty, after such uncertaintyis introduced in the database. Our current paper ad-dresses the question: what uncertainty/deviation toinitially associate with the location of each movingobject? Other relevant research areas are temporaldatabases ([10]), and spatial databases (see [6] for asurvey). Research in these areas can be used to de-velop languages to query the position attributes. Forexample, temporal and spatial query languages can beadapted to express queries such as: where will the he-licopters be in 10 minutes. In this paper we addressedthe questions how and when to update the positionattributes.Another relevant area is constraint databases (see[2] for a survey). In this sense, our position attributescan be viewed as a constraint, or a generalized tuple,



such that the tuples satisfying the constraint are con-sidered in the database. Constraint databases havebeen separately applied to the temporal domain, andto the spatial domain. Constraint databases can beused as a framework in which to implement the pro-posed update policies.Finally, in our earlier work ([8]) we introduced dy-namic attributes, which are somewhat similar to posi-tion attributes in the sense that they change continu-ously as a function of time. However, that paper dealtmainly with query languages for dynamic attributes;the main topics of this paper, i.e. position updatepolicies, imprecision, and error-bounds, have not beendiscussed there. Also the indexing method we intro-duced in this paper is designed to handle imprecision,and is di�erent from the method in [8]. Furthermore,using dynamic attributes for moving objects necessi-tates representing the x coordinate of an object asone dynamic attribute, and the y coordinate as an-other. However, this may be unsatisfactory if the ob-ject is moving along a winding route. In this casethe speed along each coordinate may change very fre-quently (since changes in the direction of the motionvector result in changes in the projection of the motionvector on each one of the coordinates), necessitatingfrequent updates, even if the vehicle's speed remainsconstant.6 ConclusionIn this paper we considered databases that modelthe location of objects moving on routes. Thesedatabases are expected to become common in militaryand transportation systems. We addressed three prob-lems: �rst, bounding the position-uncertainty, i.e. theuncertainty of a reply to a query that retrieves the po-sition of a particular moving object; second, reducingthe position-update cost; and third, e�cient retrievalof objects based on the current or future position.We proposed the modeling of moving objects us-ing position attributes, and have shown by simulationthat this approach reduces the position update over-head by 85%. We formulated the database-positionupdate problem as a mathematical cost optimizationproblem using the concept of a position-update policy,i.e. a quintuple (deviation cost function, update cost,estimator function, �tting method, predicted speed).Such a policy is adaptive and predictive in the sensethat the update time-points depend on the currentand predicted behavior of the deviation (of the actualposition from the database position) as a function oftime. Then we devised and analyzed three positionupdate policies. We showed that the DBMS is ableto bound the uncertainty at any point in time. Actu-ally, for two of the policies (the immediate ones) theposition-uncertainty decreases as time-since-the-last-update increases.An alternative to our approach is to de�ne a prioria bound B on the deviation, with a policy in whichthe moving object sends a position update messagewhen the deviation exceeds B. The problem with thisapproach is that it is quite unlikely that B is totallyindependent of the update message cost.

Then we considered range queries on position at-tributes, i.e. queries that retrieve all the objects thatare in a particular region at a particular time. Weproposed a geometric formulation of such queries in3-dimensional time-space. This formulation enablesthe processing of these queries in sublinear time, us-ing spatial indexing.We believe that as the world becomes a more dy-namic place, as geographic distances are shrinking andremote locations of the globe become more accessi-ble, and as new applications are developed, location-databases will become increasingly important. Muchremains to be done in order to make these real-timedatabases a commercial reality. We intend to extendthe present work by studying other update policies,building a simulation testbed to evaluate the perfor-mance of these policies, developing query languagesand user interfaces for these databases, studying in-dexing, imprecision/uncertainty, distribution and dataallocation in these databases.References[1] S. Abiteboul, R. Hull, V. Vianu, Foundations ofDatabases, Addison Wesley, 1995.[2] P. Kanellakis, Constraint programming anddatabase languages, ACM Symposium on Princi-ples of Database Systems, May 1995.[3] A. Motro, P. Smets, Uncertainty ManagementInformation Systems, From Needs to Solutions,Kluwer Academic Publishers, 1997.[4] R. Snodgrass and I. Ahn, The temporal databases,IEEE Computer, Sept. 1986.[5] H. Samet, The design and analysis of spatial datastructures, Addison Wesley, 1990.[6] H. Samet, W.G. Aref, Spatial Data Models andQuery Processing, In Modern Database Systems,Won Kim ed., Addison Wesley, 1995.[7] S.D. Silvey, Statistical Inference, Chapman andHall, 1975.[8] P. Sistla, O. Wolfson, S. Chamberlain, S. Dao,Modeling and Querying Moving Objects, to appear,Proceedings of the Thirteenth International Con-ference on Data Engineering (ICDE13), Birming-ham, UK, Apr.97.[9] R. Snodgrass and I. Ahn, The temporal databases,IEEE Computer, Sept. 1986.[10] A. Tansel, J. Cli�ord, S. Gadia, S. Jajo-dia, A. Segev,R. Snodgrass,editors, TemporalDatabases: Theory, design, and Implementation,Benjamin/Cummings, 1993.


