
WOSBIS’97 -- Budapest, Hungary, October 1, 1997 7

Location Management in Moving Objects Databases �Ouri Wolfsony, Sam Chamberlainz, Son Daox, Liqin Jiangy1 AbstractIn this paper we �rst introduce Moving ObjectsDatabases and their related research problems.Then we concentrate on a particular problem,namely reducing the information cost associatedwith a trip taken by some moving object (e.g. avehicle). The information cost of a trip consists ofthe overhead of position-update messages and thedeviation of the database position from the actualposition of the object. We introduce two positionupdate policies, namely plain dead reckoning (pdr)and adaptive dead reckoning (adr). We show thatadr has a lower information cost than pdr.2 Introduction2.1 Moving Objects Databases andRelevant ResearchConsider a database that represents informationabout moving objects and their position. For ex-ample, for a database representing the location oftaxi-cabs a typical query may be: retrieve the freecabs that are currently within 1 mile of 33 N. Michi-gan Ave., Chicago (to pick-up a customer); or fora trucking company database a typical query maybe: retrieve the trucks that are currently within 1mile of truck ABT312 (which needs assistance); orfor a database representing the current position ofobjects in a battle�eld a typical query may be: re-trieve the friendly helicopters that are in a givenregion, or, retrieve the friendly helicopters that areexpected to enter the region within the next 10 min-utes. The queries may originate from the movingobjects, or from stationary users. We will refer tothe above applications as moving-objects-database(MOD) applications.�This research was supported in part by NSF grant IRI-9224605, NSF grant IRI-9408750, DARPA grant N66001-97-2-8901, NATO grant CRG-960648yDepartment of Electrical Engineering and Computer Sci-ence, University of Illinois, Chicago, IL 60607zArmy Research Laboratory, Aberdeen Proving Ground,MDxHughes Research Laboratories, Malibu, CA

Database management system (DBMS) technol-ogy provides a foundation for e�ciently answeringqueries about moving objects. However, there is acritical set of capabilities that have to be integrated,adapted, and built on top of existing DBMS's inorder to support moving objects databases. Theobjective of our Databases fOr MovINg Objects(DOMINO) project is to build an envelope contain-ing these capabilities on top of existing DBMS's.The added capabilities include, among otherthings, support for spatial and temporal informa-tion. For example, \retrieve the friendly helicoptersthat are expected (according to current speed anddirection information) to be WITHIN polygon PDURING the next 10 minutes" is a spatio-temporalquery. It requires an intuitive query language, thatincludes spatial operators (e.g. point WITHIN poly-gon) and temporal operators (e.g. DURING); italso requires indexing and e�cient processing algo-rithms. Although temporal databases ([12, 10, 11,14, 15, 13]), and spatial databases (see [8] for a sur-vey) have been studied in the literature, the inte-grated application of spatial and temporal databasesfor the purpose of modeling moving objects has notbeen considered, although we believe that it is im-portant.The problem is further complicated because thelocation of a moving object is inherently uncertain,i.e. the position re
ected in the database at a partic-ular time will usually not be identical to the actualposition of the moving object at the time. Again,although uncertainty and incomplete information indatabases has been studied before (see [6, 1] for sur-veys), none of the approaches provide a satisfactorysolution to our problem. For example, consider thequery Q: \retrieve the friendly helicopters that areexpected (according to current speed and directioninformation) to enter the polygon P within the next10 minutes". Assume that there exist some a pri-ori bounds on the deviation of the database positionfrom the actual position, namely uncertainty bounds.For example, if an uncertainty bound is x it meansthat the actual position must be within a distance ofx from the database position. We'd like to be able toenter the query Q with either, \must" or \maybe"semantics. In the former case the database retrieves

8

the objects that, under deviation bounds assump-tion, must in P within the next 10 minutes; and inthe latter, the ones that maybe in P within the next10 minutes.The next problem is how to set the uncertaintybounds for a moving object. The problem is relatedto works on location management in the cellular ar-chitecture. Namely, when calling or sending a mes-sage to a mobile user, the network infrastructuremust locate the cell in which the user is currentlylocated. The location database is the database thatgives the current cell of each mobile user. The recordis updated when the user moves from one cell to an-other, and it is read when the user is called. Ex-isting works on location management (see, for ex-ample, [9, 3, 2, 5, 4]) address the problem of allo-cating and distributing the location database suchthat the lookup time and update overhead are min-imized. Location management in the cellular archi-tecture can be viewed as addressing the problem ofproviding uncertainty bounds for each mobile user.The geographic bounds of the cell constitute the un-certainty bounds for the user.Uncertainty at the cell-granularity is su�cient forthe purpose of calling a mobile user or sendinghim/her a message. When it is also su�cient forMOD applications, the location database can be soldby wireless communication vendors to mobile
eetoperators. In satellite networks the diameterof a cell ranges from hundreds to thousandsof miles. This makes the location-uncertaintyat cell-granularity much too high for MODapplications and queries as discussed above.Consequently, in satellite networks and in environ-ments that are not covered by the cellular architec-ture each moving object has to send to the location-database position update messages 1, i.e. messagesthat update the object-position in the database. Forthe purpose of resource management, position up-date messages may be bene�cial even in terrestrialcellular networks with small cells. The reason is thatthe network can better plan bandwidth allocation ifeach base station knows the location and motion ofeach mobile unit in its cell. For example, if the net-work knows that a user u is on the fringe of cell A,moving to adjacent cell B, then it can reserve band-width for u at cell B.1We assume that at any point in time each vehicle knowsits exact current position, using, for example, an onboard Ge-ographic Positioning System (GPS). The present work is alsoapplicable to the case where the moving object does not havea GPS, but there is some sensor that can compute the currentdistance between the moving object's position recorded in thedatabase and its actual position.

2.2 Position update policiesFrequent position-updating may be expensive interms of performance and uplink wireless-bandwidthoverhead. This paper is concerned with theoverhead of position update messages. In or-der to drastically reduce the update cost, we modelthe current position of a moving object as the dis-tance from its starting position, along a given route.The distance continuously increases as a function oftime, without being updated. So, for example, theDBMS knows that the moving object m started at5pm at position (x0; y0) on a given route known tothe DBMS, and it travels at 60 miles/hour; thus, atany point in time after 5pm, in response to a query,the DBMS can easily compute the current positionof m. Our simulation experiments show that, evenwhen the speed
uctuates sharply, this techniquereduces the number of updates to 15% of the num-ber used by the traditional, nontemporal method (inthis method the database simply stores the latestknown position for each object); this saves 85% ofthe position-updates overhead.Assuming that the actual position of m deviatesfrom the position computed by the DBMS (namelythe database position) due to the fact that m doesnot travel continuously at exactly 60 mi/hr, an up-date policy for m dictates how frequently m shouldupdate its position in the database in order to elimi-nate the deviation. A simple update policy is calledin the military \plain dead-reckoning (pdr)". Themoving object provides a threshold th, and commitsto update its position whenever the deviation, i.e.the di�erence between the actual position and thedatabase position, exceeds th. 2 The problem withpdr is that the threshold th should vary dependingon the update cost (note that the update cost mayvary over time depending on the demand for band-width) and the expected behavior of the deviation.To address this problem we introduce another up-date policy, \adaptive dead reckoning (adr)". It pro-vides at each update a new threshold th that is com-puted using a cost based approach. th minimizes thetotal of the update cost and the deviation cost, underreasonable assumptions about the future behavior ofthe deviation.We compare by simulation the adr and pdr poli-cies. Our simulations indicate that adr is superiorto pdr in the sense that it has a lower informationcost, i.e. total cost of updates and deviation.The rest of this paper is organized as follows. In2Note that at any point in time, since the moving objectknows its actual position and the starting point and speedstored in the database, it can compute its current deviation.

9

section 3 we discuss position attributes of movingobjects, and in section 4 we discuss the informationcost of a trip. In section 5 we introduce the twoposition update policies, and in section 6 we discussthe results of their comparison by simulation. Insection 7 we summarize the paper.3 Position attributesA database is a set of object-classes. An object-classis a set of attributes. Some object-classes are desig-nated as spatial. Each spatial object class is eithera point-class, a line-class, or a polygon-class.Point object classes are either mobile or station-ary. A point object class O has a position attributeP . If the object class is stationary, its position at-tribute has two sub-attributes P:x, and P:y, rep-resenting the x and y coordinates of the object.If the object class is mobile, its position attributehas seven sub-attributes, P:starttime, P:route,P:x:startposition, P:y:startposition, P:direction,P:speed, and P:bound.The semantics of the sub-attributes are as fol-lows. P:route is (the pointer to) a line spatialobject indicating the route on which an object inthe class O is moving. 3 P:x:startposition andP:y:startposition are the x and y coordinates ofa point on P:route; it is the position of the mov-ing object at time P:starttime. In other words,P:starttime is the time when the moving object wasat position (P:x:startposition, P:y:startposition).We assume that whenever a moving object updatesits P attribute it updates the P:x:startposition andP:y:startposition subattributes; thus P:starttime isalso the time of the last position-update. We assumein this paper that the database updates are instanta-neous, i.e. valid- and transaction- times (see [7]) areequal. Therefore, P:starttime is the time at whichthe update occurred in the real world system beingmodeled, and the time when the database installedthe update. P:direction is a binary indicator hav-ing a value 0 or 1 (these values may correspond tonorth-south, or east-west, or the two endpoints ofthe route). P:speed is a linear function of the formf(t) = b � t. It is de�ned by the speed b of the mov-ing object, and it gives the current distance from thestarting position as a function of the time t elapsedsince the last update. P:bound is the threshold onthe position deviation (the deviation is formally de-�ned at the end of this section); when the deviation3For simplicity, our discussion pertains to routes in 2-dimensional space, but our concepts and results can be ex-tended to routes in 3-dimensional space.

reaches the threshold, the moving object sends a po-sition update message.We de�ne the route-distance between two pointson a given route to be the distance along the routebetween the two points. We assume that it isstraightforward to compute the route-distance be-tween two points, and the point at a given route-distance from another point. This is the case, forexample, if the route is given by a piece-wise linearfunction. The database position of a moving objectat a given point in time is de�ned as follows. Attime P:starttime the database position is the pair(P:x:startposition, P:y:startposition); the databaseposition at time A:starttime + t0 is the point onthe route which is at route-distance P:speed � t0from the point with coordinates (P:x:startposition,P:y:startposition). Intuitively, the database posi-tion of a moving object at a given point in time t isthe position of the object as far as the DBMS knows;it is the position that is returned by the DBMS inresponse to a query entered at time t that retrievesthe object's position.We assume that at the beginning of the trip themoving object writes all the sub-attributes of theposition attribute. Subsequently, the moving ob-ject periodically updates its current position andspeed stored in the database. Speci�cally, a posi-tion update is an update message sent by the mov-ing object to the database; it consists of valuesfor at least the sub-attributes P:starttime, P:speed,P:x:startposition and P:y:startposition.Since between two consecutive position updatesthe moving object does not travel at exactly thespeed P:speed, the actual position of the moving ob-ject deviates from its database position. Formally,for a moving object, the deviation d at a point intime t, denoted d(t), is the route-distance betweenthe moving object's actual position at time t and itsdatabase position at time t. The deviation is alwaysnonnegative. At any point in time the moving objectknows its current position, and it knows the param-eters of the last position-update. Therefore at anypoint in time the (computer onboard the) movingobject can compute the current deviation.4 The information cost of atripFor a moving object m the cost of the deviation be-tween two time points t1 and t2 is given by the de-viation cost function, denoted COSTd(t1; t2); it isa function of two variables that maps the deviationbetween the time points t1 and t2 into a nonnega-

10

tive number. For example, suppose that one (1) isthe penalty for each unit of deviation reported in re-sponse to a query that retrieves the position of m;and on average, there is one such query per timeunit. Then, the cost of a unit of deviation per unitof time is one, and the cost of the deviation betweentwo time points t1 and t2 is:COSTd(t1; t2) = Z t2t1 d(t)dt (1)We call the function of equation 1 the uniform devi-ation cost function.In this paper we consider only update policies thathave the uniform deviation cost function. However,there exist other deviation cost functions. For exam-ple, the step deviation cost function carries a zero-penalty for each time unit in which the deviationstays below some threshold h, and a penalty of oneotherwise.The update cost, denoted C, is a nonnegative num-ber representing the cost of a position-update mes-sage sent from the moving object to the database.The update cost may di�er from one moving objectto another, and it may vary even for a single movingobject during a trip, due for example, to changingavailability of bandwidth. The update cost must begiven in the same units as the deviation cost. In par-ticular, for the uniform deviation cost function, C isthe ratio between the update cost, and the cost of aunit of deviation per unit of time. For example, thecost of a wireless message using one of the wirelessdata transmission services (e.g. RAM mobile dataCo. or ARDIS Co.) is 5 cents. Thus, if the cost ofa unit of deviation per unit of time is one cent, thenC = 5.Another way of interpreting C is the following. If1/C is the number of messages that the moving ob-ject is willing to use in order to reduce the deviationby one during one unit of time, then the cost of amessage is C.Let t1 and t2 be the time-stamps of two consec-utive position update messages. Then the positionupdate policy takes the information cost in the in-terval [t1, t2) to be:COST [t1; t2) = C + COSTd(t1; t2) (2)Observe that COST [t1; t2) includes the messagecost at time t1 but not at time t2. Observe alsothat each position update message writes the actualcurrent position in the database, thus it reduces thedeviation to zero. The information cost of a trip isthe information cost of the deviation plus the posi-tion update messages during the trip. It is computed

by summing up COST [t1; t2) for every pair of con-secutive update points t1 and t2 (the end of the tripis considered to be an update point).5 The adr and pdr policiesWhen using the plain dead-reckoning (pdr) policy,the moving object has a prede�ned threshold th, andit updates the database whenever the deviation ex-ceeds th. The update simply includes the currentposition and current speed.A second policy that we consider in this paperis adaptive dead reckoning (adr). Next we describethe adr policy, and then we'll give the mathemat-ical motivation for it. At the beginning, the mov-ing object declares to the DBMS an initial deviationthreshold th1, and an initial database speed. Thenit starts tracking the deviation. When the devia-tion reaches th1, the moving object sends an updateto the database. The update consists of the cur-rent speed, current position, and a new thresholdth2 to be installed in the P:bound subattribute. th2is computed as follows. Denote by t1 the numberof time units from the beginning of the trip untilthe deviation reaches th1 for the �rst time, by I1the cost of the deviation (which is computed usingequation 1) during that same time interval, and leta1 = 2I1t21 . Then th2 is p2a1C (remember, C is theupdate cost). When the deviation reaches th2, asimilar update is sent, except that the new thresh-old th3 is p2a2C, where a2 = 2I2t22 (I2 is the cost ofthe deviation from the �rst update, t2 is the timeelapsed since the �rst position update). Since a2may be di�erent than a1, th2 may be di�erent thanth3. When th3 is reached the object will send an-other update containing th4 (which is computed ina similar fashion), and so on.The mathematical motivation for adr is based onthe following proposition.Proposition 1: Assume that two consecutive po-sition updates occur at times t1 and t2. Assume fur-ther that between t1 and t2, the deviation d(t) isgiven by the function a(t� t1) where t1 � t � t2 anda is some positive constant. Denote the update costby C. Then, for the uniform deviation cost function,the information cost per time unit between t1 andt2 is minimized if t2 = t1 +q 2aC .Proof: Assume without loss of generality thatthe last database update occurred at time t1. Then,

11

based on equations 1 and 2, for t > t1:COST [t1; t) = C + Z tt1 a(t� t1)dt = C + a(t� t1)22 (3)Denote by f(t2) the information cost per time unitbetween t1 and t2, for the update time t2. Namely,f(t2) = COST [t2�t1)(t2�t1) . It is easy to see that f(t2) =2C+a(t2�t1)22(t2�t1) . Using the derivative it is easy to cal-culate that the minimum of f(t2) is obtained whent2 = t1 +q 2Ca . 2Now we can motivate adr's setting of the thresh-old to p2aiC. When updating the DBMS at timet1, adr estimates the deviation after t1 by the lin-ear function d(t) = at, where t is the number oftime units after t1 and a is de�ned as follows. If wedenote by t0 the time of the position update thatimmediately precedes the update at t1, then a is 2Ir2where I is the cost of deviation from t0 to t1, and r isthe number of time units from t0 to t1. This estima-tion of adr will be explained in a moment. But forthis de�nition of d(t), based on the previous propo-sition, the optimal update time, i.e. the one thatminimizes the information cost per time unit, is att1+q2Ca , and at that time the value of the functiond(t) is p2aC, i.e. d(t1 +q 2Ca) = p2aC.Now we'll motivate the estimation of the futuredeviation (i.e. the one after the update at time t1),by the function d(t) = at. Adr approximates the cur-rent deviation, i.e. the deviation from last updateto time t1, by a linear function with slope a = 2Ir2 .Observe that at time t1 this linear function has thesame deviation cost (namely I) as the actual currentdeviation. Based on the locality principle, adr pre-dicts that after the update at t1, the deviation willbehave according to the same approximation func-tion.6 Comparison of adr and pdrpolicies by simulationThe analysis compares the information cost of theadr and pdr policies on a set of ten two-hour trips.Each trip is represented by a speed curve, i.e. theactual-speed of a moving object as a function oftime. In �gures 1 and 2 we show two typical speedcurves. For each speed curve, update policy, and up-date cost C we execute a simulation run. The runcomputes the information cost 4 (a single number),4Remember, the information cost of an update policy on agiven speed-curve is computed by using equation 2 for every

the number of update messages(also a single num-ber) of the policy on the curve for the given updatecost C. Then, for each policy, we average the infor-mation cost over all the speed curves, and plot thisaverage as a function of the update cost C. We dothe same for the average number of update messages.Each simulation run is executed as follows. Aspeed-curve is a sequence S of actual speeds, onefor each time unit. In our simulations a time unit is10 seconds. Using S we simulate the moving object'scomputer working with a particular update policy.This is done as follows. For each time unit there isa threshold th, as well as a database speed and anactual speed; The deviation at a particular point intime t is the di�erence between the integral of theactual-speed as a function of time, and the integralof the database-speed (the integrals are taken fromthe last update until t). Denote by T the sequenceof deviations, one at each time unit. If the deviationat time t reaches the threshold th, we generate anupdate record consisting of: the current time, thecurrent position, the current speed, the next thresh-old (for pdr it is still th, for adr it is computed asexplained in the previous section); the deviation attime t becomes zero. Denote by U the sequence ofupdate records. Using T we compute the total infor-mation cost of the deviation, denoted c1, and usingU we compute the total information cost of the up-dates, c2. The information cost of the policy on thespeed curve is c1 + c2.We compare the information cost and number ofupdates for adr and pdr. Figures 3-10 plot the re-sults of the comparison. Each �gure compares adrand pdr(X), i.e. pdr with threshold X, where X =0.2, 0.5, 1.5, 2.5, or 7.5. When adr is comparedwith pdr(X), the �rst threshold of pdr is taken to beX; the following thresholds are determined dynam-ically, as explained in the previous section. Each�gure compares either the information cost, or thenumber of updates. Each curve representing a pol-icy plots the information cost of the policy or itsnumber of messages as a function of the update costC.The basic conclusion from the simulations is thatalthough for some values of the threshold and theupdate cost the information costs of the two policiesare roughly equal, for most thresholds and updatecosts adr is superior to pdr. The information cost ofpdr may be as high as twice the information cost ofadr (e.g for threshold=0.2 when C is close to 50, orfor threshold 7.5 when C = 1).Observe that the information cost curves of thetime interval between two consecutive update points.

12

adr policy are almost identical, regardless of theinitial threshold value (except possibly the extremevalue of 7.5). The same holds for the number ofupdates curves. This indicates that the adr policyexhibits a stable behavior which is independent ofthe initial conditions.7 ConclusionWe �rst introduced Moving Objects Databases andtheir relationship to spatial and temporal databases,uncertainty, and location management in cellularsystems. Then we concentrated on a particular prob-lem, namely reducing the information cost associ-ated with a trip taken by some moving object. Theinformation cost of a trip consists of the cost ofposition-update messages, plus the cost of the de-viation (namely the distance between the databaseposition and actual position).Then we introduced two position update policies,namely policies for updating the database positionof a moving object. These are pdr and adr. Pdrupdates the database whenever the deviation ex-ceeds a �xed threshold, and adr does so wheneverthe deviation exceeds a threshold that varies overtime depending on the deviation and position up-date message cost. We showed by simulation thatadr is superior to pdr in terms of information cost.References[1] S. Abiteboul, R. Hull, V. Vianu, Foun-dations of Databases, Addison Wesley,1995.[2] B. R. Badrinath, T. Imielinski, A. Vir-mani, Locating Strategies for PersonalCommunication Networks, Workshop onNetworking for Personal Communica-tions Applications, IEEE GLOBECOM,December 1992.[3] J. S. M. Ho, I. F. Akyildiz, Local AnchorScheme for Reducing Location TrackingCosts in PCN, 1st ACM InternationalConference on Mobile Computing andNetworking (MOBICOM'95), Berkeley,California, November 1995.[4] T. Imielinski and H. Korth, MobileComputing, Kluwer Academic Publish-ers, 1996.[5] R. Jain, Y.-B. Lin, C. Lo, and S.Mohan, A Caching Strategy to Reduce

Network Impacts of PCS, IEEE Jounalon Selected Areas in Communications,Vol(12), October 1994[6] A. Motro, Management of Uncer-tainty in Database Systems, In ModernDatabase Systems, Won Kim ed., Addi-son Wesley, 1995.[7] R. Snodgrass and I. Ahn, The temporaldatabases, IEEE Computer, Sept. 1986.[8] H. Samet, W.G. Aref, Spatial Data Mod-els and Query Processing, In ModernDatabase Systems, Won Kim ed., Addi-son Wesley, 1995.[9] N. Shivakumar, J. Jannink and J.Widom, Per-User Pro�le Replicationin Mobile Environments: Algorithms,Analysis, and Simulation Results, to ap-pear, ACM/Baltzer Journal on SpecialTopics in Mobile Networks and Appli-cations, special issue on Data Manage-ment, 1997.[10] R. Snodgrass, The Temporal Query Lan-guage TQuel, ACM Trans. on DatabaseSystems, 12(2), June 1987.[11] R. Snodgrass, ed., Data Engineering,Special Issue on Temporal Databases,Dec. 1988.[12] A. Segev and A. Shoshani, LogicalModeling of Temporal Data, Proc. ofthe ACM-Sigmod International Conf. onManagement of Data, 1987.[13] A. Tansel, J. Cli�ord, S. Gadia, S. Jajo-dia, A. Segev,R. Snodgrass,editors, Tem-poral Databases: Theory, design, andImplementation, Benjamin/Cummings,1993.[14] G. Wiederhold, S. Jajodia, W. Litwin,Dealing with granularity of time intemporal databases, In Springer-VerlagLNCS, Vol. 498, 1991.[15] X. Wang, S. Jajodia, V. S. Subrahma-nian, Temporal Modules: An approachtoward federated temporal databases, In-formation Sciences, Vol. 82 , 1995

13

0

10

20

30

40

50

60

70

80

0 1000 2000 3000 4000 5000 6000 7000

S
pe

ed
(M

ile
s/

ho
ur

)

Time(Secs)

Figure 1 Speed Curve for A Two Hour Trip

’speed’

0

200

400

600

800

1000

1200

1400

1 6 11 16 21 26 31 36 41 46

T
ot

al
C

os
t

UpdateCost

Figure 3 Average Information Cost for ADR and PDR with Threshold = 0.2

’adr’
’pdr’

0

200

400

600

800

1000

1200

1400

1 6 11 16 21 26 31 36 41 46

In
fo

rm
at

io
nC

os
t

UpdateCost

Figure 5 Average InformationCost for ADR and PDR with Threshold = 0.5

’adr’
’pdr’

0

10

20

30

40

50

60

70

80

0 1000 2000 3000 4000 5000 6000 7000

S
pe

ed
(M

ile
s/

ho
ur

)

Time(Secs)

Figure 2 Speed Curve for A Two Hour Trip

’speed’

0

5

10

15

20

25

30

35

40

1 6 11 16 21 26 31 36 41 46

N
um

be
r

of
 U

pd
at

es

UpdateCost

Figure 4 Average Number of Updates for ADR and PDR with Threshold=0.2

’adr’
’pdr’

0

5

10

15

20

25

30

35

40

1 6 11 16 21 26 31 36 41 46

N
um

be
r

of
 U

pd
at

es

UpdateCost

Figure 6 Average Number of Updates for ADR and PDR with Threshold=0.5

’adr’
’pdr’

14

0

200

400

600

800

1000

1200

1400

1 6 11 16 21 26 31 36 41 46

In
fo

rm
at

io
nC

os
t

UpdateCost

Figure 7 Average InformationCost for ADR and PDR with Threshold = 1.5

’adr’
’pdr’

0

200

400

600

800

1000

1200

1400

1 6 11 16 21 26 31 36 41 46

In
fo

rm
at

io
n

C
os

t

UpdateCost

Figure 9 Average Information Cost for ADR and PDR with Threshold = 2.5

’adr’
’pdr’

0

500

1000

1500

2000

1 6 11 16 21 26 31 36 41 46

In
fo

rm
at

io
n

C
os

t

UpdateCost

Figure 11 Average Information Cost for ADR and PDR with Threshold = 7.5

’adr’
’pdr’

0

5

10

15

20

25

30

35

40

1 6 11 16 21 26 31 36 41 46

N
um

be
r

of
 U

pd
at

es

UpdateCost

Figure 8 Average Number of Updates for ADR and PDR with Threshold=1.5

’adr’
’pdr’

0

5

10

15

20

25

30

35

40

45

50

1 6 11 16 21 26 31 36 41 46

N
um

be
r

of
 U

pd
at

es

UpdateCost

Figure 10 Average Number of Updates for ADR and PDR with Threshold=2.5

’adr’
’pdr’

0

5

10

15

20

25

30

35

40

45

50

1 6 11 16 21 26 31 36 41 46

N
um

be
r

of
 U

pd
at

es

UpdateCost

Figure 12 Average Number of Updates for ADR and PDR with Threshold=7.5

’adr’
’pdr’

