Location Management in Moving Objects Databases *

Ouri Wolfson! Sam Chamberlain? Son Dao! Ligin Jiang?

1 Abstract

In this paper we first introduce Moving Objects
Databases and their related research problems.
Then we concentrate on a particular problem,
namely reducing the information cost associated
with a trip taken by some moving object (e.g. a
vehicle). The information cost of a trip consists of
the overhead of position-update messages and the
deviation of the database position from the actual
position of the object. We introduce two position
update policies, namely plain dead reckoning (pdr)
and adaptive dead reckoning (adr). We show that
adr has a lower information cost than pdr.

2 Introduction

2.1 Moving Objects Databases and
Relevant Research

Consider a database that represents information
about moving objects and their position. For ex-
ample, for a database representing the location of
taxi-cabs a typical query may be: retrieve the free
cabs that are currently within 1 mile of 33 N. Michi-
gan Ave., Chicago (to pick-up a customer); or for
a trucking company database a typical query may
be: retrieve the trucks that are currently within 1
mile of truck ABT312 (which needs assistance); or
for a database representing the current position of
objects in a battlefield a typical query may be: re-
trieve the friendly helicopters that are in a given
region, or, retrieve the friendly helicopters that are
expected to enter the region within the next 10 min-
utes. The queries may originate from the moving
objects, or from stationary users. We will refer to
the above applications as moving-objects-database
(MOD) applications.

*This research was supported in part by NSF grant IRI-
9224605, NSF grant IRI-9408750, DARPA grant N66001-97-
2-8901, NATO grant CRG-960648

fDepartment of Electrical Engineering and Computer Sci-
ence, University of Illinois, Chicago, IL 60607

fArmy Research Laboratory, Aberdeen Proving Ground,
MD

§Hughes Research Laboratories, Malibu, CA

Database management system (DBMS) technol-
ogy provides a foundation for efficiently answering
queries about moving objects. However, there is a
critical set of capabilities that have to be integrated,
adapted, and built on top of existing DBMS’s in
order to support moving objects databases. The
objective of our Databases fOr MovINg Objects
(DOMINO) project is to build an envelope contain-
ing these capabilities on top of existing DBMS’s.

The added capabilities include, among other
things, support for spatial and temporal informa-
tion. For example, “retrieve the friendly helicopters
that are expected (according to current speed and
direction information) to be WITHIN polygon P
DURING the next 10 minutes” is a spatio-temporal
query. It requires an intuitive query language, that
includes spatial operators (e.g. point WITHIN poly-
gon) and temporal operators (e.g. DURING); it
also requires indexing and efficient processing algo-
rithms. Although temporal databases ([12, 10, 11,
14, 15, 13]), and spatial databases (see [8] for a sur-
vey) have been studied in the literature, the inte-
grated application of spatial and temporal databases
for the purpose of modeling moving objects has not
been considered, although we believe that it is im-
portant.

The problem is further complicated because the
location of a moving object is inherently uncertain,
i.e. the position reflected in the database at a partic-
ular time will usually not be identical to the actual
position of the moving object at the time. Again,
although uncertainty and incomplete information in
databases has been studied before (see [6, 1] for sur-
veys), none of the approaches provide a satisfactory
solution to our problem. For example, consider the
query @: “retrieve the friendly helicopters that are
expected (according to current speed and direction
information) to enter the polygon P within the next
10 minutes”. Assume that there exist some a pri-
ori bounds on the deviation of the database position
from the actual position, namely uncertainty bounds.
For example, if an uncertainty bound is x it means
that the actual position must be within a distance of
z from the database position. We’d like to be able to
enter the query () with either, “must” or “maybe”
semantics. In the former case the database retrieves

WOSBIS 97 -- Budapest, Hungary, October 1, 1997 7

the objects that, under deviation bounds assump-
tion, must in P within the next 10 minutes; and in
the latter, the ones that maybe in P within the next
10 minutes.

The next problem is how to set the uncertainty
bounds for a moving object. The problem is related
to works on location management in the cellular ar-
chitecture. Namely, when calling or sending a mes-
sage to a mobile user, the network infrastructure
must locate the cell in which the user is currently
located. The location database is the database that
gives the current cell of each mobile user. The record
is updated when the user moves from one cell to an-
other, and it is read when the user is called. Ex-
isting works on location management (see, for ex-
ample, [9, 3, 2, 5, 4]) address the problem of allo-
cating and distributing the location database such
that the lookup time and update overhead are min-
imized. Location management in the cellular archi-
tecture can be viewed as addressing the problem of
providing uncertainty bounds for each mobile user.
The geographic bounds of the cell constitute the un-
certainty bounds for the user.

Uncertainty at the cell-granularity is sufficient for
the purpose of calling a mobile user or sending
him/her a message. When it is also sufficient for
MOD applications, the location database can be sold
by wireless communication vendors to mobile fleet
operators. In satellite networks the diameter
of a cell ranges from hundreds to thousands
of miles. This makes the location-uncertainty
at cell-granularity much too high for MOD
applications and queries as discussed above.

Consequently, in satellite networks and in environ-
ments that are not covered by the cellular architec-
ture each moving object has to send to the location-
database position update messages !, i.e. messages
that update the object-position in the database. For
the purpose of resource management, position up-
date messages may be beneficial even in terrestrial
cellular networks with small cells. The reason is that
the network can better plan bandwidth allocation if
each base station knows the location and motion of
each mobile unit in its cell. For example, if the net-
work knows that a user u is on the fringe of cell A,
moving to adjacent cell B, then it can reserve band-
width for u at cell B.

We assume that at any point in time each vehicle knows
its exact current position, using, for example, an onboard Ge-
ographic Positioning System (GPS). The present work is also
applicable to the case where the moving object does not have
a GPS, but there is some sensor that can compute the current
distance between the moving object’s position recorded in the
database and its actual position.

2.2 Position update policies

Frequent position-updating may be expensive in
terms of performance and uplink wireless-bandwidth
overhead. This paper is concerned with the
overhead of position update messages. In or-
der to drastically reduce the update cost, we model
the current position of a moving object as the dis-
tance from its starting position, along a given route.
The distance continuously increases as a function of
time, without being updated. So, for example, the
DBMS knows that the moving object m started at
5pm at position (zg,yo) on a given route known to
the DBMS, and it travels at 60 miles/hour; thus, at
any point in time after 5pm, in response to a query,
the DBMS can easily compute the current position
of m. Our simulation experiments show that, even
when the speed fluctuates sharply, this technique
reduces the number of updates to 15% of the num-
ber used by the traditional, nontemporal method (in
this method the database simply stores the latest
known position for each object); this saves 85% of
the position-updates overhead.

Assuming that the actual position of m deviates
from the position computed by the DBMS (namely
the database position) due to the fact that m does
not travel continuously at exactly 60 mi/hr, an up-
date policy for m dictates how frequently m should
update its position in the database in order to elimi-
nate the deviation. A simple update policy is called
in the military “plain dead-reckoning (pdr)”. The
moving object provides a threshold th, and commits
to update its position whenever the deviation, i.e.
the difference between the actual position and the
database position, exceeds th. > The problem with
pdr is that the threshold ¢th should vary depending
on the update cost (note that the update cost may
vary over time depending on the demand for band-
width) and the expected behavior of the deviation.

To address this problem we introduce another up-
date policy, “adaptive dead reckoning (adr)”. It pro-
vides at each update a new threshold th that is com-
puted using a cost based approach. th minimizes the
total of the update cost and the deviation cost, under
reasonable assumptions about the future behavior of
the deviation.

We compare by simulation the adr and pdr poli-
cies. Our simulations indicate that adr is superior
to pdr in the sense that it has a lower information
cost, i.e. total cost of updates and deviation.

The rest of this paper is organized as follows. In

2Note that at any point in time, since the moving object
knows its actual position and the starting point and speed
stored in the database, it can compute its current deviation.

section 3 we discuss position attributes of moving
objects, and in section 4 we discuss the information
cost of a trip. In section 5 we introduce the two
position update policies, and in section 6 we discuss
the results of their comparison by simulation. In
section 7 we summarize the paper.

3 Position attributes

A database is a set of object-classes. An object-class
is a set of attributes. Some object-classes are desig-
nated as spatial. Fach spatial object class is either
a point-class, a line-class, or a polygon-class.

Point object classes are either mobile or station-
ary. A point object class O has a position attribute
P. If the object class is stationary, its position at-
tribute has two sub-attributes P.x, and P.y, rep-
resenting the z and y coordinates of the object.
If the object class is mobile, its position attribute
has seven sub-attributes, P.starttime, P.route,
P.xz.startposition, P.y.startposition, P.direction,
P.speed, and P.bound.

The semantics of the sub-attributes are as fol-
lows. P.route is (the pointer to) a line spatial
object indicating the route on which an object in
the class O is moving. ® P.x.startposition and
P.y.startposition are the x and y coordinates of
a point on P.route; it is the position of the mov-
ing object at time P.starttime. In other words,
P.starttime is the time when the moving object was
at position (P.z.startposition, P.y.startposition).
We assume that whenever a moving object updates
its P attribute it updates the P.z.startposition and
P.y.startposition subattributes; thus P.starttime is
also the time of the last position-update. We assume
in this paper that the database updates are instanta-
neous, i.e. valid- and transaction- times (see [7]) are
equal. Therefore, P.starttime is the time at which
the update occurred in the real world system being
modeled, and the time when the database installed
the update. P.direction is a binary indicator hav-
ing a value 0 or 1 (these values may correspond to
north-south, or east-west, or the two endpoints of
the route). P.speed is a linear function of the form
f() =b-t. It is defined by the speed b of the mov-
ing object, and it gives the current distance from the
starting position as a function of the time ¢ elapsed
since the last update. P.bound is the threshold on
the position deviation (the deviation is formally de-
fined at the end of this section); when the deviation

3For simplicity, our discussion pertains to routes in 2-
dimensional space, but our concepts and results can be ex-
tended to routes in 3-dimensional space.

reaches the threshold, the moving object sends a po-
sition update message.

We define the route-distance between two points
on a given route to be the distance along the route
between the two points. We assume that it is
straightforward to compute the route-distance be-
tween two points, and the point at a given route-
distance from another point. This is the case, for
example, if the route is given by a piece-wise linear
function. The database position of a moving object
at a given point in time is defined as follows. At
time P.starttime the database position is the pair
(P.x.startposition, P.y.startposition); the database
position at time A.starttime + to is the point on
the route which is at route-distance P.speed - tq
from the point with coordinates (P.x.startposition,
P.y.startposition). Intuitively, the database posi-
tion of a moving object at a given point in time ¢ is
the position of the object as far as the DBMS knows;
it is the position that is returned by the DBMS in
response to a query entered at time t that retrieves
the object’s position.

We assume that at the beginning of the trip the
moving object writes all the sub-attributes of the
position attribute. Subsequently, the moving ob-
ject periodically updates its current position and
speed stored in the database. Specifically, a posi-
tion update is an update message sent by the mov-
ing object to the database; it consists of values
for at least the sub-attributes P.starttime, P.speed,
P.z.startposition and P.y.startposition.

Since between two consecutive position updates
the moving object does not travel at exactly the
speed P.speed, the actual position of the moving ob-
ject deviates from its database position. Formally,
for a moving object, the deviation d at a point in
time ¢, denoted d(t), is the route-distance between
the moving object’s actual position at time ¢ and its
database position at time ¢. The deviation is always
nonnegative. At any point in time the moving object
knows its current position, and it knows the param-
eters of the last position-update. Therefore at any
point in time the (computer onboard the) moving
object can compute the current deviation.

4 The information cost of a

trip

For a moving object m the cost of the deviation be-
tween two time points ¢; and ¢ is given by the de-
viation cost function, denoted COSTy(t1,t2); it is
a function of two variables that maps the deviation
between the time points ¢; and ¢» into a nonnega-

tive number. For example, suppose that one (1) is
the penalty for each unit of deviation reported in re-
sponse to a query that retrieves the position of m;
and on average, there is one such query per time
unit. Then, the cost of a unit of deviation per unit
of time is one, and the cost of the deviation between
two time points t; and #5 is:

COSTy(ty, 1s) = / ’ d(t)dt (1)

t1

We call the function of equation 1 the uniform devi-
ation cost function.

In this paper we consider only update policies that
have the uniform deviation cost function. However,
there exist other deviation cost functions. For exam-
ple, the step deviation cost function carries a zero-
penalty for each time unit in which the deviation
stays below some threshold h, and a penalty of one
otherwise.

The update cost, denoted C, is a nonnegative num-
ber representing the cost of a position-update mes-
sage sent from the moving object to the database.
The update cost may differ from one moving object
to another, and it may vary even for a single moving
object during a trip, due for example, to changing
availability of bandwidth. The update cost must be
given in the same units as the deviation cost. In par-
ticular, for the uniform deviation cost function, C' is
the ratio between the update cost, and the cost of a
unit of deviation per unit of time. For example, the
cost of a wireless message using one of the wireless
data transmission services (e.g. RAM mobile data
Co. or ARDIS Co.) is 5 cents. Thus, if the cost of
a unit of deviation per unit of time is one cent, then
C=5.

Another way of interpreting C' is the following. If
1/C is the number of messages that the moving ob-
ject is willing to use in order to reduce the deviation
by one during one unit of time, then the cost of a
message is C.

Let ¢; and 3 be the time-stamps of two consec-
utive position update messages. Then the position
update policy takes the information cost in the in-
terval [t1, t2) to be:

COST[t1,t;) = C + COSTy(t1,t:) (2)

Observe that COSTt1,t2) includes the message
cost at time #; but not at time ¢,. Observe also
that each position update message writes the actual
current position in the database, thus it reduces the
deviation to zero. The information cost of a trip is
the information cost of the deviation plus the posi-
tion update messages during the trip. It is computed

by summing up COST|[t;,t2) for every pair of con-
secutive update points t; and to (the end of the trip
is considered to be an update point).

5 The adr and pdr policies

When using the plain dead-reckoning (pdr) policy,
the moving object has a predefined threshold th, and
it updates the database whenever the deviation ex-
ceeds th. The update simply includes the current
position and current speed.

A second policy that we consider in this paper
is adaptive dead reckoning (adr). Next we describe
the adr policy, and then we’ll give the mathemat-
ical motivation for it. At the beginning, the mov-
ing object declares to the DBMS an initial deviation
threshold th;, and an initial database speed. Then
it starts tracking the deviation. When the devia-
tion reaches thy, the moving object sends an update
to the database. The update consists of the cur-
rent speed, current position, and a new threshold
tho to be installed in the P.bound subattribute. ths
is computed as follows. Denote by #; the number
of time units from the beginning of the trip until
the deviation reaches th; for the first time, by Iy
the cost of the deviation (which is computed using
equation 1) during that same time interval, and let
a; = % Then thy is v/2a1C (remember, C' is the
update cost). When the deviation reaches ths, a
similar update is sent, except that the new thresh-
old ths is v/2a>C, where as = % (I, is the cost of
the deviation from the first upd2ate, ty is the time
elapsed since the first position update). Since as
may be different than a, thy may be different than
ths. When thg is reached the object will send an-
other update containing ths (which is computed in
a similar fashion), and so on.

The mathematical motivation for adr is based on
the following proposition.

Proposition 1: Assume that two consecutive po-
sition updates occur at times t; and t,. Assume fur-
ther that between ¢; and t,, the deviation d(t) is
given by the function a(t —t;) where t; <t < t» and
a is some positive constant. Denote the update cost
by C. Then, for the uniform deviation cost function,
the information cost per time unit between ¢; and
ty is minimized if to = #; + %“

Proof: Assume without loss of generality that
the last database update occurred at time ;. Then,

10

based on equations 1 and 2, for ¢ > t;:

! a(t —t1)?
COST[tllt) =C + / a(t - tl)dt =C + f
Jt,
(3)
Denote by f(t2) the information cost per time unit
between t; and t5, for the update time #5. Namely,
flte) = %. It is easy to see that f(t2) =
2C+a(ta—t1)?
2(ta—t1)
culate that the minimum of f(¢2) is obtained when
ty=t1+,/2. O
Now we can motivate adr’s setting of the thresh-
old to v/2a;C. When updating the DBMS at time
t1, adr estimates the deviation after t; by the lin-
ear function d(t) = at, where ¢ is the number of
time units after ¢; and a is defined as follows. If we
denote by to the time of the position update that
immediately precedes the update at t;, then a is i—g
where [is the cost of deviation from ¢y to t;, and r is
the number of time units from ¢y to ¢;. This estima-
tion of adr will be explained in a moment. But for
this definition of d(t), based on the previous propo-
sition, the optimal update time, i.e. the one that
minimizes the information cost per time unit, is at

. Using the derivative it is easy to cal-

th+ 257 and at that time the value of the function

d(t) is V2aC, ie. d(t, + /20) = V2aC.

Now we’ll motivate the estimation of the future
deviation (i.e. the one after the update at time ¢;),
by the function d(t) = at. Adr approximates the cur-
rent deviation, i.e. the deviation from last update
to time t;, by a linear function with slope a = f,—zl
Observe that at time ¢; this linear function has the
same deviation cost (namely I) as the actual current
deviation. Based on the locality principle, adr pre-
dicts that after the update at #;, the deviation will
behave according to the same approximation func-
tion.

6 Comparison of adr and pdr
policies by simulation

The analysis compares the information cost of the
adr and pdr policies on a set of ten two-hour trips.
Each trip is represented by a speed curve, i.e. the
actual-speed of a moving object as a function of
time. In figures 1 and 2 we show two typical speed
curves. For each speed curve, update policy, and up-
date cost C' we execute a simulation run. The run
computes the information cost (a single number),

4Remember, the information cost of an update policy on a
given speed-curve is computed by using equation 2 for every

the number of update messages(also a single num-
ber) of the policy on the curve for the given update
cost C. Then, for each policy, we average the infor-
mation cost over all the speed curves, and plot this
average as a function of the update cost C'. We do
the same for the average number of update messages.

Each simulation run is executed as follows. A
speed-curve is a sequence S of actual speeds, one
for each time unit. In our simulations a time unit is
10 seconds. Using S we simulate the moving object’s
computer working with a particular update policy.
This is done as follows. For each time unit there is
a threshold th, as well as a database speed and an
actual speed; The deviation at a particular point in
time ¢ is the difference between the integral of the
actual-speed as a function of time, and the integral
of the database-speed (the integrals are taken from
the last update until ¢). Denote by T the sequence
of deviations, one at each time unit. If the deviation
at time ¢ reaches the threshold th, we generate an
update record consisting of: the current time, the
current position, the current speed, the next thresh-
old (for pdr it is still th, for adr it is computed as
explained in the previous section); the deviation at
time ¢ becomes zero. Denote by U the sequence of
update records. Using T" we compute the total infor-
mation cost of the deviation, denoted c¢;, and using
U we compute the total information cost of the up-
dates, ¢o. The information cost of the policy on the
speed curve is ¢ + co.

We compare the information cost and number of
updates for adr and pdr. Figures 3-10 plot the re-
sults of the comparison. Each figure compares adr
and pdr(X), i.e. pdr with threshold X, where X =
0.2, 0.5, 1.5, 2.5, or 7.5. When adr is compared
with pdr(X), the first threshold of pdr is taken to be
X; the following thresholds are determined dynam-
ically, as explained in the previous section. Each
figure compares either the information cost, or the
number of updates. Each curve representing a pol-
icy plots the information cost of the policy or its
number of messages as a function of the update cost
C.

The basic conclusion from the simulations is that
although for some values of the threshold and the
update cost the information costs of the two policies
are roughly equal, for most thresholds and update
costs adr is superior to pdr. The information cost of
pdr may be as high as twice the information cost of
adr (e.g for threshold=0.2 when C is close to 50, or
for threshold 7.5 when C = 1).

Observe that the information cost curves of the

time interval between two consecutive update points.

11

adr policy are almost identical, regardless of the
initial threshold value (except possibly the extreme
value of 7.5). The same holds for the number of
updates curves. This indicates that the adr policy
exhibits a stable behavior which is independent of
the initial conditions.

7 Conclusion

We first introduced Moving Objects Databases and
their relationship to spatial and temporal databases,
uncertainty, and location management in cellular
systems. Then we concentrated on a particular prob-
lem, namely reducing the information cost associ-
ated with a trip taken by some moving object. The
information cost of a trip consists of the cost of
position-update messages, plus the cost of the de-
viation (namely the distance between the database
position and actual position).

Then we introduced two position update policies,
namely policies for updating the database position
of a moving object. These are pdr and adr. Pdr
updates the database whenever the deviation ex-
ceeds a fixed threshold, and adr does so whenever
the deviation exceeds a threshold that varies over
time depending on the deviation and position up-
date message cost. We showed by simulation that
adr is superior to pdr in terms of information cost.

References

[1] S. Abiteboul, R. Hull, V. Vianu, Foun-
dations of Databases, Addison Wesley,
1995.

[2] B. R. Badrinath, T. Imielinski, A. Vir-
mani, Locating Strategies for Personal
Communication Networks, Workshop on
Networking for Personal Communica-
tions Applications, IEEE GLOBECOM,
December 1992.

[3] J.S. M. Ho, I. F. Akyildiz, Local Anchor
Scheme for Reducing Location Tracking
Costs in PCN, 1st ACM International
Conference on Mobile Computing and
Networking (MOBICOM’95), Berkeley,
California, November 1995.

[4] T. Imielinski and H. Korth, Mobile
Computing, Kluwer Academic Publish-
ers, 1996.

[5] R. Jain, Y.-B. Lin, C. Lo, and S.
Mohan, A Caching Strategy to Reduce

[15]

Network Impacts of PCS, IEEE Jounal
on Selected Areas in Communications,
Vol(12), October 1994

A. Motro, Management of Uncer-
tainty in Database Systems, In Modern
Database Systems, Won Kim ed., Addi-
son Wesley, 1995.

R. Snodgrass and 1. Ahn, The temporal
databases, IEEE Computer, Sept. 1986.

H. Samet, W.G. Aref, Spatial Data Mod-
els and Query Processing, In Modern
Database Systems, Won Kim ed., Addi-
son Wesley, 1995.

N. Shivakumar, J. Jannink and J.
Widom, Per-User Profile Replication
in Mobile Environments: Algorithms,
Analysis, and Simulation Results, to ap-
pear, ACM/Baltzer Journal on Special
Topics in Mobile Networks and Appli-
cations, special issue on Data Manage-
ment, 1997.

R. Snodgrass, The Temporal Query Lan-
guage TQuel, ACM Trans. on Database
Systems, 12(2), June 1987.

R. Snodgrass, ed., Data Engineering,
Special Issue on Temporal Databases,
Dec. 1988.

A. Segev and A. Shoshani, Logical
Modeling of Temporal Data, Proc. of
the ACM-Sigmod International Conf. on
Management of Data, 1987.

A. Tansel, J. Clifford, S. Gadia, S. Jajo-
dia, A. Segev,R. Snodgrass,editors, Tem-
poral Databases: Theory, design, and
Implementation, Benjamin/Cummings,
1993.

G. Wiederhold, S. Jajodia, W. Litwin,
Dealing with granularity of time in
temporal databases, In Springer-Verlag
LNCS, Vol. 498, 1991.

X. Wang, S. Jajodia, V. S. Subrahma-
nian, Temporal Modules: An approach
toward federated temporal databases, In-
formation Sciences, Vol. 82 | 1995

12

Speed(Miles/hour)

TotalCost

InformationCost

80

70

60

50

40

30

20

1400

1200

1000

1400

1200

Figure 1 Speed Curve for A Two Hour Trip
T T T T T
'speed’ —
I I I I I I I
1000 2000 3000 4000 5000 6000 7000
Time(Secs)
Figure 3 Average Information Cost for ADR and PDR with Threshold = 0.2
T T T T T T T s T
. ‘adr —
pdr’ -

I I I I I I I I I
1 6 11 16 21 26 31 36 41 46
UpdateCost
Figure 5 Average InformationCost for ADR and PDR with Threshold = 0.5
T T T T T T T T
‘adr —
pdr’ -

21 31

26
UpdateCost

36

41

46

Speed(Miles/hour)

Number of Updates

Number of Updates

80

70 |

60 [

Figure 2 Speed Curve for A Two Hour Trip
T T T

'speed’ —

40

3000 4000 5000 6000
Time(Secs)

Figure 4 Average Number of Updates for ADR and PDR with Threshold=0.2
T T T T T T T T

L
7000

35

‘adr’ —
'pdr’ -----

30 |-

25 |-

15 |

10 [

26 31 36 41 46
UpdateCost

40

Figure 6 Average Number of Updates for ADR and PDR with Threshold=0.5
T T T T T T T T T

‘adr’ —
'pdr’ -----
15 | —
10 [—
5L i
0 I I I I I I I I I
1 6 11 16 21 31 36 41 46

26
UpdateCost

13

1400

1200

1000

InformationCost

1400

1200

1000

Information Cost

2000

1500

1000

Information Cost

500

1 6 11 16 21

1 6 11 16 21

Figure 7 Average InformationCost for ADR and PDR with Threshold = 1.5
T T T T T T T

I I I I I I I I I
1 6 11 16 21 26 31 36 41 46
UpdateCost
Figure 9 Average Information Cost for ADR and PDR with Threshold = 2.5
T T T T T T T T T
‘adr —
pdr’ -

L L L L L L L L L
31 36 41 46

26
UpdateCost

Figure 11 Average Information Cost for ADR and PDR with Threshold = 7.5
T T T T T T T T T
‘adr —

26 31 36 41 46
UpdateCost

Number of Updates

Number of Updates

Number of Updates

40

Figure 8 Average Number of Updates for ADR and PDR with Threshold=1.5
T T T T T T T T

T
‘adr —

5 1
0 I I I I I I I I I
1 6 11 16 21 26 31 36 41 46
UpdateCost
Figure 10 Average Number of Updates for ADR and PDR with Threshold=2.5

50 T T T T T T T T T
’agr' —_—
odrt ——

45 P q

40 | q

0 L L L L L

26
UpdateCost

31 36 41 46

nd PDR with Threshold=7.5

Figure 12 Average Number of Updates for ADR ar
50 T T T T T

45

35 |-

T T T T
‘adr —
pdr —— |

26
UpdateCost

31 36 41 46

14

