Modeling and Querying M oving Objects

A. Prasad Sistla*

Abstract

In this paper we propose a data model for representing
moving objects in database systems. It is called the Mov-
ing Objects Spatio-Temporal (MOST) data model. Wealso
propose Future Temporal Logic (FTL) as the query lan-
guage for the MOST model, and devise an algorithm for
processing FTL queriesin MOST.

1. Introduction

Existing database management systems (DBMS's) are
not well equipped to handle continuously changing data,
such as the position of moving objects. The reason for this
isthat in databases, data is assumed to be constant unless
it is explicitly modified. For example, if the salary field
is 30K, then this salary is assumed to hold (i.e. 30K is
returned in response to queries) until explicitly updated.
Thus, in order to represent moving objects (e.g. cars) in
a database, and answer queries about their position (e.g.,
How far is the car with license plate RWW860 from the
nearest hospital?) the car’s position hasto be continuously
updated. This is unsatisfactory since either the position
is updated very frequently (which would impose a serious
performanceand wirel ess-bandwidth overhead), or, the an-
swer to queriesis outdated. Furthermore, it is possible that
dueto disconnection, an object cannot continuously update
its position.

In this paper we propose to solve this problem by rep-
resenting the position as a function of time; it changes as
time passes, even without an explicit update. So, for ex-
ample, the position of acar isgiven asafunction of its mo-
tion vector (e.g., north, at 60 miles’hour). In other words,
weconsider ahigher level of dataabstraction, where an ob-
ject’smoation vector (rather than its position) is represented
as an attribute of the object. Obviously the motion vector
of an object can change (thusit can be updated), but in most
cases it does so less frequently than the position of the ob-
ject.

*Department of Electrical Engineering and Computer Science, Uni-
versity of Illinais, Chicago, IL 60607

tDepartment of Electrical Engineering and Computer Science, Uni-
versity of lllinois, Chicago, IL 60607 CESDIS, NASA Goddard Space
Flight Center, Code 930.5, Greenbelt, MD 20771

Army Research L aboratory, Aberdeen Proving Ground, MD

§Hughes Research Laboratories, Information Sciences Laboratory,
Malibu, CA

Ouri Wolfsont

Sam Chamberlaint Son Dao®

In this paper we propose a data model called Mov-
ing Objects Spatio-Temporal (or MOST for short) for
databases with dynamic attributes, i.e. attributes that
change continuously as a function of time, without being
explicitly updated. In other words, the answer to a query
depends not only on the database contents, but also on the
time at which the query is entered. Furthermore, we ex-
plain how toincorporate dynamic attributesin existing data
models and what capabilities need to be added to existing
query processing systems to deal with dynamic attributes.

Clearly, our proposed model enablesqueriesthat refer to
future values of dynamic attributes, namely future queries.
For exampl e, consider an air-traffic control application, and
suppose that each object in the database represents an air-
craft and its position. Then the query Q = “retrieve al the
airplanesthat will comewithin 30 milesof theairportinthe
next 10 minutes’ can beansweredin our model. In [14] we
introduced a temporal query language called Future Tem-
poral Logic (FTL). The language is more natural and in-
tuitive to use in formulating future queries such as Q. Un-
fortunately, due to the difference in data models, the algo-
rithm developed in [14] for processing FTL queries does
not work for MOST databases. Therefore, in this paper we
develop an algorithm for processing an important subclass
of FTL queriesfor MOST databases.

The answer to future queriesis usualy tentative in the
following sense. Suppose that the answer to the above
query Q contains airplane a. It is possible that after the
answer is presented to the user, the motion vector of a
changesin away that steersa away fromtheairport, and the
database is updated to reflect this change. Thus a does not
come within 30 miles of the airport in the next 10 minutes.
Therefore, in this sense the answer to future queriesisten-
tative, i.e. it should be regarded as correct according what
iscurrently known about thereal world, but thisknowledge
(e.g. the motion vector) can change.

Continuous queries is another topic that requires new
consideration in our model. For example, suppose that
thereisarelation MOTELS (that resides, for example, ina
satellite) giving for each motel its geographic-coordinates,
room-price, and availability. Consider a moving car is-
suing a query such as "Display motels (with availability
and cost) within aradius of 5 miles’, and suppose that the
query is continuous, i.e., the car requests the answer to the
query to be continuously updated. Observe that the an-
swer changes with the car movement. When and how of-
ten should the query be reevaluated? Our query process-

ing algorithm facilitates a single evaluation of the query;
reevaluation has to occur only if the motion vector of the
car changes.

We assume that there is a natural, user-friendly way of
entering into the database the current position and motion
vector of objects. For example, apoint onascreen may rep-
resent the car’s current position!, and the driver may draw
around it, on the touch-sensitive screen, acircle with ara-
dius of 5 miles; then ¥he may name the circle C' and indi-
cate that C' moves as a rigid body having the motion vec-
tor of the car. Thisway the driver specifiesacircle and its
motion vector, and the car’s computer can create adatarep-
resentation of the moving object. The computer can auto-
matically update the motion vector of C' when it senses a
changesin speed or direction. In other applications, such
as air-traffic-control, there may be other means of entering
objects and their motion vector.

Generally, aquery in our datamodel involvesspatial ob-
jects (e.g. points, lines, regions, polygons) and their mo-
tion vector. Some examples of queries are: “Retrieve the
objectsthat will intersect the polygon P within 3 minutes”’,
or, “Retrieve the objects that will intersect P within 3 min-
utes, and have the attribute PRICE < 1007, or, “Retrieve
the objects that will intersect P within 3 minutes, and stay
in Pfor 1 minute”, or “Retrieve the objects that will inter-
sect P within 3 minutes, stay in the polygon for 1 minute,
and 5 minutes later enter another polygon Q.

For performance considerations, in answering queries
of this type, we would like to avoid examining each mov-
ing object in the database. In other words, we would like
to index dynamic attributes. The problem with a straight-
forward use of spatial indexingisthat since objectsare con-
tinuously moving, the spatial index has to be continuously
updated, an unacceptable solution. Therefore, we intro-
duce one possible method of indexing dynamic attributes,
which guaranteeslogarithmic (in the number of objects) ac-
cesstime.

In summary, in this paper we introduce the MOST data
model whose main contributionsare as follows.

e A newtypeof attributescalled dynamicattributes. A
method of indexing dynamic attributesisintroduced.
The principles for incorporating dynamic attributes
on top of existing DBMS's are outlined.

¢ Adaptationof FTL asaquery languagein MOST. An
efficient algorithm is devised for processing queries
specified in an important subclass of FTL.

The rest of this paper is organized as follows. In sec-
tion 2 we introduce the MOST data model and discuss the
types of queriesit supports in terms of database histories.
In section 3 we definethe FTL query language, i.e. itssyn-
tax and semanticsin the context of MOST; we a so demon-
stratethelanguage using examples, and weintroducean al-
gorithm for processing FTL queries. In section 4 we dis-
cuss a method of indexing dynamic attributes. In section 5

Lthis position may be supplied, for example, by a Geographic Position-
ing System (GPS) on board the car.

we discuss several issues related to implementation of the
MOST data model, including: MOST on top of existing
DBMS's, queriesissued by moving objects, and distributed
query processing. In section 6 we compare our work to rel-
evant literature, and in section 7 we discuss future work.

2. The MOST data mode

The traditional database modd is as follows. A
databaseis a set of object-classes. A specia database ob-
ject called time gives the current time at every instant; its
domainistheset of natural numbers, anditsvalueincreases
by one in each clock tick. An object-classis a set of at-
tributes. For example, MOTELS is an object class with
attributes Name, Location, Number-of-rooms, Price-per-
room, etc.

Some object-classes are designated as spatial. A spa-
tial object class has three attributes called X.POSITION,
Y.POSITION, Z.POSITION, denoting the object’s position
in space. The spatial object classes have a set of spatial
methods associated with them. Each such method takes
gpatial objects as arguments. Intuitively, these methods
represent spatial relationships among the objects at a cer-
tain point in time, and they return true or false, indicating
whether or not the relationship is satisfied at the time. For
example, INSIDE(o,P) and OUTSIDE(o,P) arespatial rela-
tions. Each one of them takes as argumentsa point-object o
and a polygon-object P in adatabase state; and it indicates
whether or not o is inside (outside) the polygon P in that
state. Another example of aspatial relationis WITHIN-A-
SPHERE(r, o1 , ... ,0r). Itsfirst argument is areal num-
ber r, and its remaining arguments are point-objectsin the
database. WITHIN-A-SPHERE indicates whether or not
the point-objects can be enclosed within a sphere of radius
r.

There may also be methodsthat return an integer value.
For example, the method DIST (o1, 0-) takes as arguments
two point-objects and returns the distance between the
point-objects.

To model moving objects, in subsection 2.1 we intro-
duce the notion of a dynamic attribute, and in subsection
2.2 werelateit to the concept of adatabase history. In sub-
section 2.3 we discuss three different types of queries that
arisein thismodel.

2.1 Dynamic attributes

Each attribute of an object-class is either static or dy-
namic. Intuitively, a static attribute of an object is an at-
tribute in the traditional sense, i.e. it changes only when
an explicit update of the database occurs; in contrast, a
dynamic attribute changes over time according to some
given function, even if it is not explicitly updated. For ex-
ample, consider a moving object whose position in two-
dimensional space at any point in time is given by values
of the z, y coordinates. Then each one of the object’s coor-
dinatesis adynamic attribute.

Formally, a dynamic attribute A isrepresented by three
sub-attributes, A.value, A.updatetime, and A. function,
where A. function isafunction of asingle variable ¢ that
hasvalueO at ¢t = 0. The value of a dynamic attribute
depends on the time, and it is defined as follows. At time
A.updatetimethevalueof AisA.value, and until the next
update of A thevalueof A attime A.time + to isgiven by
A.walue + A.function(ty). An explicit update of a dy-
namic attribute may change its value sub-attribute, or its
function sub-attribute, or both sub-attributes.

In addition to querying the value of a dynamic at-
tribute, a user can query each sub-attribute indepen-
dently. Thus, the user can ask for the objects for which
X.POSITION.function =5 - t, i.e. the objectswhose
speed in the X directionisb.

There are two possible inter-
pretations of A.updatetime, corresponding to valid-time
and transaction-time (see [8]). Inthefirst interpretation, it
is the time at which the update occurred in the real world
system being modeled, e.g. the time at which the vehicle
changed its motion vector. In this case, along with the up-
date, the sensor hasto send to the database A.updatetime.
In the second interpretation, A.updatetime, issimply the
time-stamp when the update was committed by the DBMS.
In this paper we assume that the database is updated in-
stantaneoudly, i.e. the valid-time and transaction-time are
equal.

When a dynamic attribute is queried, the answer re-
turned by the DBMS consists of the value of the attribute
at the time the query is entered. In this sense, our model
isdifferent than existing database systems, since, unlessan
attribute has been explicitly updated, a DBMS returns the
same value for the attribute, independently of the time at
which the query is posed. So, for example, in our model
the answer to the query: "retrieve the current z-position
of object 0" depends on the value of the dynamic attribute
X.POSITION at the time at which the query is posed. In
other words, the answer may be different for time-points ¢,
and t,, even though the database has not been explicitly up-
dated between these two time-points.

In this paper we are concerned with dynamic attributes
that represent spatial coordinates, but the model can be
used for other hybrid systems, in which dynamic attributes
represent, for example, temperature, or fuel consumption.

2.2 Databasehistories

In existing database systems, queriesrefer to the current
database state, i.e. the state existing at the time the query
is entered. For example, the query can request the current
price of astock, or the current position of an object, but not
future ones. Consequently, existing query languages are
nontemporal, i.e. limited to accessing asingle (i.e. the cur-
rent) database state. 1n our model, the database implicitly
represents future states of the system being modeled (e.g.
future positions of moving objects), therefore we can envi-
sion queries pertaining to the future, rather than the current

state of the system being modeled. For example, amoving
car may request all the motelsthat it will reach (i.e. come
within 500 yards of) in the next 20 minutes. To interpret
this type of queries, i.e. queries referring to dynamic at-
tributes, we need the notion of a database history, i.e. ase-
guence of database states.

A database state is a mapping that associates a set of
objects of the appropriate type to each object class. Each
database state has an associated time stamp. Inthestate, the
value of a dynamic attribute is taken to be the value of the
attribute at thetime ¢ = time stamp. Queriesare interpreted
over database histories. A databasehistoryisaninfinitese-
quence of database states, one for each clock tick, accord-
ingto afixed global clock. Thus, thetime stampsalong the
database history are strictly increasing. Furthermore, the
value of an attribute A of an object may be different in two
consecutive database states for one of two reasons. Firgt,
A wasexplicitly updated, and second, A isadynamic vari-
ablethat was not explicitly updated but itsvalueisdifferent
at the consecutive clock ticks.

At aparticular point in time ¢, the database states with
a lower time-stamp than ¢ are called the past database-
history. However, the history also containsan infinite num-
ber of statesin the future database-history, i.e. states with
atime-stamp higher than the current time ¢. Each statein
thefuturehistory isidentical tothestateat timet¢, except for
thevalue of thedynamic attributes. Thevalueof adynamic
attribute A in a future state with time-stamp ¢’ is taken to
be the value of A at time ¢'. This value is computed ac-
cording to the A.value and A. function a timet. Thus,
although the database contents areidentical throughout the
future database-history, the values of a dynamic attribute
may not be identical.

We would like to emphasize at this point that the
database history is an abstract concept, introduced solely
for the providing formal semantics to our temporal query
language, FTL. The database history does not consume
space, since we do not save information about the history.

2.3 Threetypesof MOST queries

A query is a predicate over the database history (rather
than a predicate over a single database state, as in tradi-
tional databases). The answer to a query is defined when
the predicate is satisfied, and it consists of the set of in-
stantiations of the variables that satisfy the predicate. In
our model we need to distinguish between three types of
queries, instantaneous, continuous and persistent. The
same query may be entered as instantaneous, continuous
and persistent, producing different results in each case.
These types differ depending on the history on which the
query is evaluated, and on the evaluation time. In contrast,
in traditional databases the situation is simpler. There are
two types of queries, instantaneous and continuous. An
instantaneous query is a predicate on the current database
state, and a continuous query is a predicate on each one of
the future states.

Formally, an instantaneous query at time ¢ is a query
evauated on the infinite history starting at ¢, i.e. the time
when the query is entered. ¢ is usually the time when the
query is entered. For example, the query Q =" Display the
motelswithin 5 miles of my position”, when considered as
an instantaneous query returns a set of motels presented to
the user immediately after the query is evaluated.

Observethat an instantaneous query may refer to the fu-
ture history, and it may refer to more than one database
state. For example, "Display the motels that | will reach
within 3 minutes” refersto all the states with atime-stamp
between now and three minutes later.

Obvioudly, since an instantaneous query is eval uated on
aninfinite history, its answer may beinfinite. For example,
thequery: " Display thetuples(motel ,reaching-time) repre-
senting themotelsthat | will reach, and thetimewhen | will
do so” may have an infinite answer. To copewith thissitu-
ation we will assume in this paper that a continuous query
expires after a predefined (but very large) amount of time.
There are other ways of dealing with this problem (they in-
volve a finite representation of infinite sets), but these are
beyond the scope of this paper.

To motivate the second type of query, assume that a sat-
isfactory motel is not found as aresult of the instantaneous
query @, since, for example, the price is too high for the
value. However, theanswer to () changesasthe car moves,
even if the database is not updated. Thus, the traveler may
wish to make the query continuous, i.e. request the system
to regard it as an instantaneous query being continuously
reissued at each clock tick (while the car is moving), un-
til cancelled (e.g. until a satisfactory motel isfound). For-
mally, acontinuous query at time ¢ is a sequence of instan-
taneous queries, one for each pointintime ¢’ > ¢ (i.e. the
query is considered on the infinite history starting at time
t'). If the answer to a continuous query is presented to the
user on ascreen, the display may change over time, even if
the database is not updated.

Clearly, continuously evaluating a query would be very
inefficient. Rather, when a continuousquery is entered our
processing algorithm eval uates the query once, and returns
a set of tuples. Each tuple consists of an instantiation p of
the predicate’s variables (i.e. an answer to the query when
considered in the noncontinuous sense) and atimeinterval
begin to end. Thetuple (p, begin, end) indicatesthat p is
in the answer of the instantaneous queriesfrom time begin
until thetime end. The set of tuples produced in response
to a continuous query CQ iscaled Answer(CQ).

Obvioudly, an explicit update of the database may
change atuple in Answer(CQ). For example, it is pos-
sible that the query evaluation algorithm produces the tu-
ple (o, 5,7), indicating that o satisfies the query between
times 5 and 7. If the motion vector of o is updated be-
fore time 5, the tuple may need to be replaced by, say
(0,6,7), or it may need to be deleted. Therefore, acontin-
uous query C'(Q) has to be reevaluated when an update oc-
curs that may change the set of tuples Answer(CQ). In
this sense Answer(CQ) isamaterialized view. However,

a continuous query in our model is different than a mate-
rialized view, since the answer to a continuous query may
change over time even if the database is not updated.

Finally, thethird type of query isapersistent query. For-
mally, a persistent query at time ¢ is a sequence of instan-
taneous queries on the infinite history starting at ¢. Ob-
serve that, in contrast to a continuous query, the different
instantaneous queries comprising a persistent query have
the same starting point in the history. These histories may
differ for different instantaneous queries due to database
updates executed after time ¢.

To realize the need for persistence, consider the query
R = "retrieve the objects whose speed in the direction of
the X -axis doubles within 10 minutes’. Suppose that the
query is entered as persistent at time 0. Assume that for
some object o, at time 0 the value of the dynamic attribute
X.POSITION changesaccording to the function 5¢ (recall,
t istime, i.e. the speed is5). At time 0 no objects will be
retrieved, since for each object, the speed isidentical in all
future database states; only the location changesfrom state
to state. Suppose further that after one minute the function
isexplicitly updated to 7¢, and after another minuteitisex-
plicitly updated to 10¢. Then, the speed in the X direction
has changed from 5 at time O to 10 at time 2, and hence, at
time 2 object o should be retrieved as an answer to R. But
if we consider the query R as instantaneous or continuous
o will never beretrieved, since starting at any pointintime,
the speed of o isidentical in al states of the future database
history. When entered as persistent, the query R is consid-
ered as a sequence of instantaneous queries, all operating
onthehistory that startsat time0. At time 2 thishistory re-
flectsachange of the speed from 2 to 4 within two minutes,
thus o will be retrieved at that time.

In summary, the three types of queriesare illustrated in
the following figure.

database history

~
H

t
|
N

Figure 1. database history

(8) An instantaneous query at time ¢ is evalu-
ated on the history H; (i.e. the future history
beginning at t).

(b) A continuousquery at time ¢ is a sequence
of instantaneous queries at each time ¢’ > ¢.
(c) A persistent query at time ¢ is a sequence
of instantaneous queries, all at time ¢. The
gueries are evaluated at each time t' > ¢ the
database is updated.

In contrast to continuous queries, the evaluation of per-
sistent queriesrequiressaving of information about theway

the databaseis updated over time, and we postponethe sub-
ject of persistent query evaluation to future research. Ob-
serve that persistent queries are relevant even in the ab-
sence of dynamic variables. In [14] we developed an algo-
rithmfor processing FTL persistent queries. Unfortunately,
that algorithm does not work when the queriesinvolve dy-
namic variables.

Observe that continuous and persistent queries can be
used to define temporal triggers. Such a trigger is simply
one of these two types of queries, coupled with an action
and possibly an event.

3 TheFTL language

In this section we first motivate the need for our lan-
guage (subsection 3.1), then we present the syntax (3.2) and
semantics (3.3) of FTL. In subsection 3.4 we demonstrate
the language through some example, and in subsection 3.6
we present our query processing algorithm.

3.1 Motivation

A regular query language such as SQL or OQL can be
used for expressing temporal queries on moving objects,
however, this would be cumbersome. The reason is that
these languages do not have temporal operators, i.e. key-
wordsthat are natural and intuitivein thetemporal domain.
Consider for example the query @Q: “Retrieve the pairs of
objectso and . such that the distance between o and n. stays
within 5 miles until they both enter polygon P”.

Assume that for each predicate G there are functions
begin_time(G) and end_time(G) that give the beginning
and endingtimesof thefirst time-interval duringwhich G is
satisfied; also assume that “now” denotesthe current time.
Then the query Q would be expressed as follows.

RETRIEVE o,n

FROM Moving-Objects

WHERE begin_time(DIST(o,n) < 5) < now
and end_time(DIST (o,n) < 5) >
begin_time(/NSIDE(o, P)) A INSIDE(n, P)).

At the end section 3.2 we show how the query @ is ex-
pressed in our proposed language, FTL. Clearly, the query
in FTL is simpler and more intuitive. The SQL and OQL
queries may be even more complex when considering the
fact that the spatial predicates may be satisfied for more
than one time interval. Thus, we may need the functions
begin_timel and end_timel to denote the beginning and
ending times of the first time interval, begin_time2 and
end_time2 to denote the beginning and ending of the sec-
ond time interval, etc.

3.2 Syntax

The FTL query language enables queries pertaining to
the future states of the system being modeled. Since the

language and system are designed to be installed on top of
an existing DBMS, the FTL language assumes an underly-
ing nontemporal query language provided by the DBMS.
However, the FTL languageis not dependent on a specific
underlying query language, or, in other words, can be in-
stalled on top of any DBMS. Thisingtallation is discussed
in section 4.1.

Theformulas (i.e. queries) of FTL use two basic future
temporal operators Until and Nexttime . Other tem-
poral operators, such as Eventually , can be expressed in
terms of the basic operators. The symbols of the logic in-
clude various type names, such as relations, integers, etc.
These denote the different types of object classes and con-
stants in the database. We assume that, for eachn > 0,
we have a set of n-ary function symbols and a set of n-ary
relation symbols. Each n-ary function symbol denotes a
function that takes n-arguments of particular types, and re-
turnsavaue. For example, + and * are function symbols
denoting addition and multiplication on the integer type.
Similarly, <, > arebinary relation symbols denoting arith-
metic comparison operators. The functions symbols are
also used to denote atomic queries, i.e. queriesin the un-
derlying nontemporal query language (e.g. OQL). We as-
sumethat all atomic queriesretrieve single values. For ex-
ample, the function “RETRIEVE (0.height) WHERE o.id
=100" denotesthe query that retrievesthe height of an ob-
ject whose id is 100. Atomic queries can have variables
appearing in them. For example, “RETRIEVE (0.height)
WHERE o.id = y” has the variable y appearing freein it;
for agivenvalueto thevariable y, it retrieves the height of
the object whose id is given by y.

Functionsof arity zero denote constants and rel ations of
arity zero denote propositions.

The formulas of the logic are formed using the func-
tion and relation symbols, the object classes and variables,
the logical symbols —, A, the assignment quantifier <,
squarebrackets|, | and thetemporal modal operators Until
and Nexttime . In our logic, the assignment is the only
quantifier. It binds a variable to the result of a query in
one of the database states of the history. One of the ad-
vantages of using this quantifier rather than the First Order
Logic (FOL) quantifiersis that the problems of safety are
avoided. Thisproblemismore severe when database histo-
ries(rather than database states) areinvolved. Also, thefull
power of FOL is unnecessary for the sequence of database
statesin the history. The assignment quantifier allowsusto
capture the database atomic query values at some point in
time and relate them to atomic query values at later points
intime.

A termis avariable or the application of a function to
other terms. For example, time + 10 isaterm; if z,y are
variablesand f isabinary function, then f(z,y) isaterm;
the query “RETRIEVE o.height WHERE o.id = y" speci-
fied aboveisalso aterm. Well formed formulasof thelogic
are defined asfollows. If ¢, ..., t,, areterms of appropriate
type, and R isann-ary relational symbol, then R(t1, ..., t)
isawell formedformula. If f and g arewell formed formu-

las, then—f, f Ag, f Until g, Nexttime f and ([z < t]f)
are aso well formed formulas, where z isavariable and ¢
isaterm of the same type as 2 and may contain free vari-
ables; such aterm ¢ may represent aquery on the database.
A variable z appearingin aformulais freeif itisnot inthe
scope of an assignment quantifier of the form [z « ¢].

For example, the following query retrieves the pairs of
objectso and n such that the distance between o and n stays
within 5 milesuntil they both enter polygon P (the FTL for-
mulais the argument of the WHERE clause):

RETRIEVE o,n
WHERE DIST(0,n) < 5
Until (INSIDE(o, P)) AINSIDE(n, P)

3.3 Semantics

Intuitively, the semantics are specified in the follow-
ing context. Let sq bethe state of the databasewhen aquery
fisentered. Theformula f isevaluated onthehistory start-
ing with sg.

We define the formal semantics of our logic as fol-
lows. We assume that each type used in the logic is asso-
ciated with a domain, and all the objects of that type take
values from that domain. We assume a standard interpre-
tation for all the function and relation symbolsused in the
logic. For example, < denotes the standard less-than-or-
equal-to relation, and + denotes the standard addition on
integers. We will define the satisfaction of a formula at
a state on a history with respect to an evaluation, where
an evaluation is a mapping that associates a value with
each variable. For example, consider the formula [z «+
RETRIEV E(0)|Nexttime RETRIEV E(0) # =, thatis
satisfied when the value of someattribute of o differsintwo
consecutive database states. The satisfaction of the subfor-
mula RETRIEV E(o) # x dependson the result of the
atomic query that retrieves o from the current database, as
well as on the value of the variable x. The value associ-
ated with 2 by an evaluationisthevalueof o inthe previous
database state.

The definition of the semantics proceeds inductively
on the structure of the formula. If the formula contains
no temporal operators and no assignment (to the variables)
quantifiers, then its satisfaction at a state of the history de-
pends exclusively on the values of the database variables
in that state and on the evaluation. A formula of the form
f Until g issatisfied at astate with respect to an evaluation
p,if and only if oneof thefollowing two casesholds: either
g issatisfied at that state, or there exists afuture stateinthe
history where g is satisfied and until then f continuesto be
satisfied. A formulaof theform Nexttime f issatisfied at a
state with respectto anevaluation, if and only if theformula
f issatisfied at the next state of the history with respect to
the same evaluation. A formulaof the form [z « ¢]f is
satisfied at a state with respect to an evaluation, if and only
if the formula f is satisfied at the same state with respect
to anew evaluation that assignsthe value of theterm ¢ to «
and keeps the values of the other variables unchanged. A

formulaof theform f A g issatisfied if and only if both f
and g are satisfied at the same state; a formulaof the form
- f issatisfied at a state if and only if f is not satisfied at
that state.

In our formulas we use the additional propositional
connectives Vv (disunction), = (logical implication) al
of which can be defined using — and A. We will also
use the additional temporal operators Eventually and
Always which are defined as follows. The temporal op-
erator Eventually f assertsthat f is satisfied at some fu-
ture state, and it can be defined as true Until f. Actu-
aly, in our context a more intuitive notation is often later
f, but wewill usethetraditional Eventually f. Thetem-
poral operator Always f assertsthat f is satisfied at all
future states, including the present state, and it can be de-
fined as = Eventually —f. We would like to emphasize
that, although the above context impliesthat f isevaluated
at each database state, our processing algorithm avoidsthis
overhead.

3.4 Examples

I nthissubsection, we show how to expresssome queries
in FTL. For expressive convenience, we also introduce
the following real-time (i.e. bounded) temporal operators.
These operators can be expressed using the previoudy de-
fined temporal operators and the time object. (see [14]).
Eventually within_c (g) asserts that the formula g will
be satisfied within ¢ time units from the current position.
Eventually_after ¢ (g) asserts that g holds after at least ¢
units of time. Always_for_c (g) asserts that the formula
holds continuoudly for the next ¢ units of time. The for-
mula (g until_within_c h) asserts that there exists a fu-
tureinstance within ¢ units of time where i holds, and un-
til then ¢ continues to be satisfied. Each of our example
guerieshavetheform“RETRIEVE <target-list> WHERE
<condition>". Here <condition> is given by a FTL for-
mula

The following query retrieves al the objects o that en-
ter the polygon P within three units of time, and have the
attribute PRIC E < 100.

)] RETRIEVE 0
WHERE 0.PRICE < 100A Eventually_within_c
INSIDE(o, P)

Thefollowing query retrievesall the objects o that enter
the polygon P within three units of time, and stay in P for
another 2 units of time.

(D) RETRIEVE o
WHERE Eventually_within_3
(INSIDE(o, P)A
Always.for 2 INSIDE(o, P))

The following query retrieves al the objects o that en-
ter the polygon P within three units of time, stay in P for
two units of time, and after at least five units of time enter
another polygon Q.

(1 RETRIEVE o
WHERE Eventually_within_3

functionsare linear. However, the ideas can be extended to
nonlinear functions.

[(INSIDE(o, P)A Always for 2(INSIDE(o, P))A This method is adapted from [5], athough the model

Eventually_after 5INSIDE(o,Q)]
3.5 Algorithm for evaluation of MOST queries

In this subsection, we present an algorithm for evaluat-
ing FTL queriesinthe MOST model. Our algorithmworks
for a subset of queries given by conjunctive formulas. A
conjunctive formulais an FTL formula without negation.
In practice, most queries are indeed expressed by conjunc-
tive queries. For instance, all the example queries we use
in this paper are such. Thereason for therestriction to con-
junctive formulas is safety (i.e. finiteness of the result);
negation may introduce infinite answers. The handling of
negation can be incorporated in the algorithm, but thisis
beyond the scope of this paper. An additional restriction of
the algorithm is that it works only for continuous and in-
stantaneous queries (i.e. not for persistent queries).

For a query C'() specified by the formula f with free
variables(z1, ..., z1) theagorithmreturnsarelation called
Answer(C(Q) (this relation was originally discussed in
subsection 2.2), having k + 1 attributes. The first k at-
tributes give an instantiation p to the variables, and the last
attributegivesatimeinterval duringwhichtheinstantiation
p satisfies the formula.

The system uses this relation to answer continuous and
instantaneous queries as follows. For a continuous query
C@Q, the system presentsto the user at each clock-tick ¢, the
instantiations of the tuples having an interval that contains
t. So, for example, if Answer(CQ)) consists of the tuples
(2, (10,15)), and (5, (12,14)), then the system displays the
object with id = 2 between clock ticks 10 and 15, and be-
tween clock-ticks 12 and 14 it al so displaysthe object with
id = 5.

For an instantaneous query, the system presents to the
user the instantiations of the tuples having an interval that
contains the current clock-tick.

The complete algorithm is presented in the appendix.

4 Indexing dynamic attributes

In this section we addressthe issue of indexing dynamic
attributes. The objective isto enable answering queries of
theform* Retrievethe objectsthat are currently in the poly-
gon P without examining al the objects. The problem
with a straight-forward use of spatial indexing isthat since
objectsare continuously moving, the spatial index hasto be
continuously updated, an unacceptable solution.

Weintroduce apossible method of indexing dynamic at-
tributes. Due to space limitations we only outline the main
ideasinthemethod. The method plotsall the functionsrep-
resenting the way adynamic attribute A changeswith time.
Thus, the x-axis represents time, and the y-axis represents
thevalueof A. For the sake of simplicity weassumethat the

thereis different. We use a spatial index (see [9] for asur-
vey of spatia accessindexes) for each dynamic attribute A.
Spatial indexes use a hierarchical recursive decomposition
of space, usualy into rectangles; the id of each object o is
stored in the records of representing the rectangles crossed
by the A. function of o.

Suppose now that the instantaneous query “ Retrievethe
objects for which currently 4 < A < 57 is entered at
time 1:00am. Then, using theindex we retrievetherecords
representing the rectangles that intersect the rectangle 4 <
A<bandl —e <t <1+ e Foreachobjectidinthese
records we check whether “currently” 4 < A < 5.

Anupdateof 0. A at timet involvesupdating therecords
representing rectangles ending after time ¢; o is removed
from the records representing rectangl es crossed by the old
function-ling, and it is added to the records representing
rectangles crossed by the new function-line.

For an abject movingin 2-dimensional space, the above
scheme can be mimicked using an index of 3-dimensional
space, with the third dimension being, obvioudly, time.

Observe that spatial indexing is limited to finite space.
Thus, in order to use this scheme we have to consider the
time dimension starting at 0 and ending at some time-point
T'. Consequently, the index needs to be reconstructed ev-
ery T' time units. Choosing an appropriate value for 7" is
an important future-research question.

Now suppose that the query “Retrieve the objects for
which currently 4 < A < 5" is entered at time 1:00am
as a continuous query, CQ. Then, using the index we re-
trieve the records representing the rectangles that intersect
therectangle4d < A < 5andl1 < ¢t < T. We con-
struct the set Answer(CQ) by examining each object id
o inthese records, and determining the time intervalswhen
4 <0.A<5b.

5 Discussion

Inthis section wefirst discusstheimplementation of our
proposed data model on top of existing DBMS's (subsec-
tion 5.1), then we discuss architectural issues, particularly
the implications of disconnection and memory limitations
of computers on moving objects (5.2), and various query
processing strategies in a mobile distributed system (5.3).

5.1 Implementing MOST on top of aDBMS

Our system proposed in this paper (including an FTL
language interpreter) can be implemented by a software
system, called MOST, built on top of an existing DBMS.
Such a system can add the capabilities discussed in this
paper to the DBMS as follows. We store each dy-
namic attribute A as three DBMS attributes A.value,
A.updatetime, and A. function. Any query posed to the
DBMS is first examined (and possibly modified) by the

MOST system, and so is the answer of the DBMS be-
foreit is returned to the user. In the rest of this subsec-
tion we sketch the modifications to queries and answers
of the underlying DBMS. For simplicity our exposition
will assume the relational model and SQL for the under-
lying DBMS. However, the same ideas can be extended to
object-oriented model.

If the query does not contain a reference to a dynamic
attribute nor does it contain temporal operators, the query
issimply passed to the DBM S and the answer returned to
the user.

Now assume that the query contains references to dy-
namic attributes, but not temporal operators. We will dis-
tinguish between referencesin the SELECT and WHERE
clauses. If the query contains a reference to a dynamic at-
tribute A only in the SELECT clause (i.e. in the target
list), then the MOST system modifies the query asfollows.
Instead of A, the query retrieves the attributes A.value,
A.updatetime, and A. function fromthe DBMS; and the
MOST system computesthe value of A for each retrieved
object before returning it to the user.

Assume now that the WHERE clause is F', which is a
boolean combination of atoms (for example, an atom may
be A > 5). Consider first the case where there is only a
single atom p that refers to dynamic attributesin F'. Be-
fore passing the origina query (Q to the DBM S the MOST
system replaces () by two queries, @, and @». The trans-
formation is based on the following equivalence. F =
(F'" Ap) V (F" A —p), where F' is F with p replaced by
true and F"' is F" with p replaced by false. (); and), are
defined as follows. The target list of @, and > consists
of thetarget list of (), plusthe subattributes of the dynamic
attributesin p. The FROM clause of), and (), isidenti-
cal to that of (). The WHERE clause of (), is F” and that
of Q2 isF". ()1 and), are submitted to the underlying
DBMS, and the results are processed as follows before re-
turning them to the user. The atom p is evaluated on each
tupleintheresult of (0, and theatom —p isis evaluated on
each tuplein the result of (). (To do these evaluationsthe
MOST system computesthe current values of the dynamic
attributes appearing in p using the retrieved sub-attributes.)
Thetuplesthat do not satisfy the respectiveatomsare elim-
inated, and the projection of the union of the resulting tu-
pleson the original target list is returned to the user. If the
WHERE clause has multiple atoms referencing dynamic
attributes then we can give afunction EV AL(Q) that per-
formsthe above procedure recursively, each time eliminat-
ing one of the atoms containing a dynamic variable. If the
origina query has k atoms refering to a dynamic variable
then, in the worst case, this might mean evaluating upto 2*
queriesthat do not contain dynamic variables. However, if
k issmall this may not be a serious problem.

Observe that the above procedure does not use index-
ing of the dynamic attributes. In other words, the results
of Q1 and (), are examined in their entirety. If indexing
on the dynamic attributesis available, then we can modify
the above procedure as follows. Instead of evaluating the

atoms p and —p on each tuple retrieved by @, and Q- re-
spectively, we retrieve the tuples that satisfy p and —p re-
spectively. Then we join the relation returned by (), with
the relation that satisfies p; similarly, we join the relation
returned by (), with therelation that satisfies —p. Observe
that in order for this procedure to produce correct results,
wemust ensurethat F' and p are satisfied for the sametuple
in the cartesian product of the FROM relations. We ensure
thisby including in the target list of all four queries, akey
of each relation in the FROM clause. The above method
can extended to nested SQL queriesaswell.

Now consider temporal operators. Note that the proce-
dure in the appendix given for processing FTL formulas
can be modified to take advantage of the query process-
ing capabilities of the DBMS. Thisis done as follows. In
the given FTL formula f, we identify the maximal non-
temporal subformulas. Let g beany such subformula. Note
that ¢ may contain somefreevariables. Asgiveninthe ap-
pendix, corresponding to g we compute a relation G that
contains the set of al evaluations to the free variables in
g that satisfy g. We compute this relation G by using the
decomposition method for non-temporal queries described
above. All the relations computed in this fashion are com-
bined using the procedurein the appendix, according to the
structure of the formula f.

5.2 Continuous queriesfrom moving objects

Consider acentralized DBM S equipped with the MOST
capability. Suppose that a continuous query CQ isissued
from amoving object M. M may or may not be one of the
objects represented in the database. After the centralized
DBMS computes the set Answer(C(Q), there are two ap-
proaches of transmitting it to A/, immediate and delayed.

In the immediate approach, the whole set is transmit-
ted immediately after being computed. For each tuple
(S, begin, end), the computer in M is presenting S be-
tween times begin and end. However, remember that ex-
plicit updates of the database may result in changes to
Answer(CQ). If so, the relevant changes are transmitted
to M.

The immediate approach may have to be adjusted,
depending on the memory limitations at M. For ex-
ample, M’'s memory may fit only B tuples, and the
set Answer(CQ) may be larger. In this case, the set
Answer(CQ) needs to be sorted by the begin attribute,
and transmitted in blocks of B tuples.

The delayed approach of
transmitting the set Answer(CQ) to M is the following.
Eachtuple (S, begin, end) inthe set istransmitted to M at
time begin. The computer at M/ immediately displays S,
and keepsit on display until time end.

Of course, intermediate approaches, in which subsets of
Answer(C(Q) are transmitted to M periodically, are pos-
sible.

The choice between the immediate and delayed ap-
proaches depends on several factors. Firdt, it depends on

the probability that an update to Answer(C(Q) can be
propagated to M (i.e. that M is not disconnected) before
the effects of the update need to be displayed. Second, it
dependson thefrequency of updatesto Answer(C(Q), and
the cost of propagating these updatesto M.

5.3 Distributed query processing

Assume now that each object
represented in the database is equipped with a computer,
and the database is distributed among the moving objects.
In particular, assume that the distribution is such that each
object residesin the computer on the moving vehicleit rep-
resents, but nowhereelse. Thisisareasonable architecture
in case there are very frequent updates to the attributes of
themoving object. For example, if the motion vector of the
object changes frequently, then these changes may only be
recorded at the moving object itself, rather than transmit-
ting each changeto other moving objectsor to acentralized
database.

Assume that each query is issued at some moving ob-
ject. We distinguish between three types of MOST queries.
Thefirst, called self-referencing query, isapredicatewhose
truth value can be determined by examining only the at-
tributes of the object issuing the query. For example, “Will
| reach the point (a,b) in 3 minutes’ or, “When will | reach
the point (a,b)” are self-referencing queries. Clearly, self-
referencing queries can be answered without any inter-
computer communication.

The second type of queries, called object queries, isa
predicatewhosetruth value can be determined for an object
independently of other objects. For example, “Retrievethe
objectsthat will reach the point (a,b) in 3minutes’ isan ob-
ject query; for each object we can determinewhether or not
it satisfies the predicate, independently of other objects. To
answer an object query, amobile computer needsto be able
to communicate with the other mobile computers. Assum-
ing this capability, there are two ways to processing such
a query issued from mobile object M. First isto request
that the object of each mobile computer be sent to M; then
M processes the query. Second is to send the query to all
the other mobile computers; each computer C for whichthe
predicateis satisfied sends the object C' to M. The second
approach is more efficient since it processes the query in
paralel, at al the mobile computers. The second approach
is also more efficient for continuous queries. In this case,
the remote computer C' evaluates the predicate each time
theobject C changes, and transmits C' to A/ when the pred-
icateis satisfied. Using thefirst approach C' would haveto
transmit C' to M every time the object C' changes.

The third type of query, called relationship query, isa
predicate whose truth value can only be determined given
two or more objects. For example, the query “Retrieve the
objects that will stay within 2 miles of each other for at
lease the next 3 minutes’ is arelationship query. The most
efficient way to answer a relationship query is to send all
the objects to a central location. The most natural loca-

tion is the computer issuing the query. When a relation-
ship query is presented at mobile computer M, it requests
the objectsfrom all other mobile computers. Then M pro-
cesses the query.

6 Comparison to relevant work

One area of research that is relevant to the model and
language presented in this paper istemporal databases [12,
10, 11]. The main difference between our approach and
the temporal database works is that, by and large, those
works assume that the database varies at discrete pointsin
time, and between updatesthe values of database attributes
are constant ([12] usesinterpolation functionsto some ex-
tent). In contrast, here we assume that dynamic attributes
change continuously. Also, temporal languages other than
FTL can be used to query MOST databases, but any other
processing algorithm will haveto be modified to handledy-
namic attributes.

Another relevant area is constraint databases (see [6]
for asurvey). In this sense, our dynamic attributes can be
viewed as a constraint, or a generalized tuple, such that
the tuples satisfying the constraint are considered in the
database. Constraint databases have been separately ap-
plied to the temporal (see [3, 4, 1]) domain, and to the
spatial domain (see [7]). However, the integrated appli-
cation for the purpose of modeling moving objects has not
been considered. Furthermore, this integrated application
has not been considered since the model is different than
ours, thus perhaps inappropriate for modeling moving ob-
jects. The main difference is that in constraint databases
all thetuples (or objects) that satisfy the constraint (in our
case the values of the function at all time-points) are con-
sidered to bein the database simultaneoudly. In contrast, in
our model these values are not in the database at the same
time; at any pointintimeadifferent valueisin the database.

Methods in object oriented systems are also relevant to
our model. In an object-oriented system, the value of ady-
namic attribute may be computed by a method (i.e. a pro-
gram stored with the data) using the sub-attributes of a dy-
namic attribute. However, in this case, asfar asthe DBM S
is concerned the method is a black-box, and the only way
to answer a query such as " retrieve the objects that will in-
tersect a polygon P at some time between now and 5pm”
isto evaluate the query at every point in time between now
and 5pm. In contrast, in our model we “open” the black
box, i.e. exposetothe DBM Stheway thedynamicattribute
changes. Thusthe DBM S can currently computewhich ob-
jects will intersect the polygon in the future. Additionally,
the object oriented approach is not able to utilize indexing
on dynamic variables.

Another body of relevant work is location-dependent
software systems (e.g. [13, 15, 3]). There are three differ-
ences between that work and the our work presented in this
paper. First, although independent of a particular database
management system our work pertains to incorporation of
mobility in database systems. Second, our work pertains

to situations where the mobile clients are aware not only of
their current location, but also of their movement, i.e. their
future location. Indeed for airplanes and cars moving on
the highway, thisis often the case. Third, in our model the
answer to a query depends not only on the location of the
client posing the query, but also on the time at which the
query is posed.

In our earlier work ([14]) weintroduced FTL for speci-
fying trigger conditionsin active databases. The algorithm
presented there does not work in the MOST model, sinceit
can only deal with static attributes.

7 Conclusion and future work

In this paper we introduced the the MOST data model
for representing moving objects. It has two main aspects.
First is the novel notion of dynamic attributes, i.e. at-
tributes that change continuously as time passes without
being explicitly updated. They are represented by func-
tions of time. Therefore a user can query future states of
database values. This motivates the second aspect of our
datamodel, namely the query language, FTL. It enablesthe
specification of future queries, i.e. queriesthat refer to fu-
ture states of the database.

In support of the new data model, in this paper we de-
veloped algorithmsfor processing queriesspecifiedin FTL,
we discussed a method of indexing dynamic attributes,
and we discussed methods for building the capabilities of
MOST on top of existing database management systems.
We also identified several types of queries arising in the
new data model, namely instantaneous, continuous and
persistent queries. We also discussed issues of query pro-
cessing in amobile and distributed environment.

In the future, we intend implement the MOST data
model ontop of an existing DBMS, e.g. Sybase. Weintend
to further explore various processing methods for the three
types of queries, particularly in mobile and distributed en-
vironments. We intend to experimentally compare various
mechanisms for indexing dynamic attributes.

8 Appendix: The FTL query processing al-
gorithm

Let f(x1,zq,...,2,) be a query with free variables
x1, o, ..., T respectively. We assume that the system has
aset of objectsO. Some of these objects are stationary and
the others are mobile. The positions (i.e. the X, Y and
7 coordinates) of the stationary objects are assumed to be
fixed, whilethe positionsof the mobile objects are assumed
tobedynamicvariables. We also assumethat we haveady-
namic database variable time whose value at any instance
gives the actual value of the time at that instance. With-
out loss of generality we assume that the time when we are
evauating the query is zero. The current database state re-
flects the positions of objects as of this time, and further-
more, we assume that for each dynamic variable we have

functions denoting how these variables change over time.
Asaconsequence, the values of static variablesat any time
is the same as their value at time zero, and the values of
dynamic variablesat any timein the future are given by the
functionswhich are stored in the database. Thus, thefuture
history of the database isimplicitly defined.

For each subformulag of f (including f itself), our algo-
rithm computesarelation R,. Let g(z1, ..., z;) beasubfor-
mula containing free variables z, ..., z;. Therelation R,
will have (1 + 1) attributes, thefirst] attributes correspond
tothel variables, and the last attribute denotesatimeinter-
val. Each tuplein R, denotes an instantiation p of values
tothefreevariablesin g and aninterval I duringwhichthe
formulag is satisfied with respect to p. Theintervalscorre-
sponding to different tuplesthat giveidentical valuesto the
corresponding variables will be non-overlapping, and fur-
thermore these intervals will not even be consecutive; the
non-consecutiveness of the intervals means that thereis a
non-zero gap separating intervalsin tuples that give iden-
tical values to corresponding variables; if the relation R,
does not satisfy this non-consecutiveness property then we
can modify it to satisfy this property asfollows; we simply
replace al tuples that give same values to the correspond-
ing variables and whose intervals are consecutive with a
single tuple whose interval is the union of the intervals of
the corresponding intervals.

The algorithm computes R, inductively, for each sub-
formula g in increasing lengths of the subformula. After
the termination of the algorithm, we will have the relation
R corresponding to the original formula f.

The base case in our agorithm is when g is an atomic
predicate R(z1,...,z;) such as a spatia relation etc. In
this case, we assume that thereis a routine, which for each
possible relevant instantiation of values to the free vari-
ables in g, gives us the intervals during which the rela-
tion R is satisfied. Clearly, this agorithm has to use the
initial positions and functions according to which the dy-
namic variables change. For example, if R isthe predicate
DIST(x1,z2) < 5, thentheagorithm gives, for each rel-
evant object pair o1, 02, thetimeintervalsduring which the
distance between them is < 5. We assume that the rela-
tion given by the atomic predicates are all finite. For cases
where these relations are infinite in size, we need to use
some finite representations for them and work with these
representations; this is beyond the scope of this paper and
will be discussed in alater paper.

For the case when ¢ is not an atomic predicate, we com-
pute the relation R, inductively based on the outer most
connective of g as given below.

Letg = g1 A go. Inthiscase let Ry, Ry betherela
tionscomputed for g, and g, respectively, i.e R; = R, for
i = 1,2. Foragiveninstantiation p, if g, issatisfied during
interval I; and g- is satisfied during I then g is satisfied
during the interval I; N I,. Therelation R for g is com-
puted by joining the relationships R; and R as follows:
thejoin conditionisthat common variabl e attributes should
be equal and the interval attributes should intersect; the re-

trieved tuple copies all the variable values, and the interval
inthetuplewill betheintersection of the of theintervals of
the joining tuples.

Letg = g1 Until g, and let R, and R, betherelations
correspondingto ¢g; and g, respectively. Letp+1,¢+1be
the number of columnsin R; and R, respectively. Let ;
and ¢, beany pair of tuplesin R, and R, respectively, such
that they match on columnscorrespondingto the same vari-
ables. Let T betheset of tuplesin R, havingthe sameval-
uesast; inthefirst p columns; and similarly let T, be the
set of tuplesin Ry having the samevaluesast, initsfirst ¢
columns. Let I; and I, bethe set of al intervals appearing
in Ty and T3, respectively. Note that no two intervalsin Iy
areconsecutive, i.e. itisnot the case that one of them starts
immediately after the other. Similarly, no two intervalsin
I, are consecutive. We say that an interval [I; u;] iscom-
patiblewith another interval [m; nq] if my < (u; +1) and
ny > uy, i.ethetwointervalseither overlap or they arecon-
secutive. Supposewe haveaninterval [l u;] in I; whichis
compatible with an interval [m, n,] in I>. Then, it should
be easy to see that the formula g is satisfied throughout the
interval [I; ny] with respect to the instantiation of variables
givenby thetuplest; and ¢,. A chain s isaseguenceof in-
tervals[ly ui], [mini], , [laus], [manal, ..., [lk ug], [meng]
suchthat foreachi = 1, ..., k, [[;u;] isaninterva in I; and
[m; n;] isaninterva in I, and theinterval [I; u;] is com-
patible with the interval [m; n;], and for i < k the inter-
va [m; n;] iscompatiblewith theinterval [I;11 w;1]. For
the chain s as given above, let interval(s) denotethein-
terval [I; ng]. Itiseasy to seethat theformulag is satisfied
throughoutinterval (s) with respect to theinstantiations of
the variables as given by the tuplest; and .

We say that a chain s is maximal if it is not a subse-
guence of any other chain. All the maximal chains can be
computed by sorting the sets 7; and I, individually and
running a modified merge algorithm. Let S be the set of
all proper, maximal sequences. Let A be the union of all
column namesin R, and R, that correspond to variables.
The relation R for g will contain |A| + 1 columns. For
each s € S, therelation R will contain a tuple whose first
|A| columns contain the corresponding values from ¢; or
t», and whose (| A| + 1)st column will contain the value
interval(s). For every pair of joining tuples¢; in R; and
ts in Ry, therelation R for g will have the abovetuples. In
theworst case, thisalgorithm may run in time proportional
to the product of the sizesof R; and R, respectively.

Letg = [y < q] g1, and let R, be the relation corre-
sponding to g;. The atomic query ¢ may have some free
variables. For example, ¢ may be height(o) denoting the
height attribute of the object given by thevariableo. Weas-
sumethat thevalue of g isgiven by arelation Q withp + 2
where the first p columns correspond to the free variables
ing, the (p+ 1)st columnisthe value of ¢ and thelast col-
umnisatimeinterval. Eachtuplet in @) denotesthe value
of the atomic query ¢ during the interval specified by the
last column, and for the the instantiation of free variables
specified by the first p columns; the value of the query is

given by the p + 1st column. In above example, @ will
havethree columns; thefirst column givestheobject id, the
third column givesan interval and the second column gives
the height of the object during thisinterval. Now the rela-
tion R for g isobtained by joining @ and R; wherethejoin
condition requiresthat columns corresponding to common
variables should be equal, the column corresponding to the
y variablein R; should be equal to the (p + 1)st column of
@, and the time intervals should intersect. For two joining
tuplest; in Ry and ¢, in @, in the output tuple we copy all
variable columns from #; and ¢, excepting the one corre-
sponding to variable y, and the time interval in the output
tuplewill be the intersection of thetimeintervalsin ¢; and
to.

References

[1] M. Abadi and Z. Manna. Tempora logic programming.
Journal of Symbolic Computation, Aug. 1989.

[2] S. Acharya, B. Badrinath, T. Imielinski, and J. Navas. A
www-based |ocati on dependent information service for mo-
bile clients. Rutgers Univ. TR, July 1995.

[3] M.Baudinet, M. Niezette, and P. Wol per. Onthe representa-
tion of infinite data and queries. ACM Symposium on Prin-
ciples of Database Systems, May 1991.

[4] J. Chomicki and T. Imielinski. Tempora deductive
databases and infinite objects. ACM Symposium on Prin-
ciples of Database Systems, March 1988.

[5] G. Hjdtason and H. Samet. An indexing scheme for time
dependent datain clinsys. unpublished manuscript.

[6] P. Kandlakis. Constraint programming and database lan-
guages. ACM Symposium on Principles of Database Sys-
tems, May 1995.

[7] J. Paradaens, J. van den Bussche, and D. V. Gucht. Towards
a theory of spatial database queries. ACM Symposium on
Principles of Database Systems, 1994.

[8] R. Snodgrass and I. Ahn. The temporal databases. |EEE
Computer, Sept. 1986.

[9] H. Samet. The design and analysis of spatial data struc-
tures. Addison Wesley, 1990.

[10] R. Snodgrass. The tempora query language tquel. ACM
Trans. on Database Systems, 12(2), June 1987.

[11] R. Snodgrass and ed. Special issue on temporal databases.
Data Engineering, Dec. 1988.

[12] A. Segev and A. Shoshani. Logical modeling of tempo-
ra data. Proc. of the ACM-Sgmod International Conf. on
Management of Data, 1987.

[13] B. Schilit, M. Theimer, and B. Welch. Customizing mobile
applications. USENIX Symposiumon Location Independent
Computing, Aug. 1993.

[14] P Sistla and O. Wolfson. Temporal triggers in active
databases. |EEE Transactions on Knowledge and Data En-
gineering (TKDE), 7(3), June 1995.

[15] G. Voelker and B. Bershad. Mobisaic: An informa
tion system for a mohile wireless computing environment.
Workshop on Mobile Computing Systems and Applications,
1994,

[16] J. Clifford and T. Isakowitz. On the Semantics of Tem-
pora Variable Databases. Proceedings of Fourth Inter-
national Conference on Extending Database Technology,
Cambridge, England, 1994

