
Modeling and Querying Moving Objects

A. Prasad Sistla� Ouri Wolfsony Sam Chamberlainz Son Daox
Abstract

In this paper we propose a data model for representing
moving objects in database systems. It is called the Mov-
ing Objects Spatio-Temporal (MOST) data model. We also
propose Future Temporal Logic (FTL) as the query lan-
guage for the MOST model, and devise an algorithm for
processing FTL queries in MOST.

1. Introduction

Existing database management systems (DBMS’s) are
not well equipped to handle continuously changing data,
such as the position of moving objects. The reason for this
is that in databases, data is assumed to be constant unless
it is explicitly modified. For example, if the salary field
is 30K, then this salary is assumed to hold (i.e. 30K is
returned in response to queries) until explicitly updated.
Thus, in order to represent moving objects (e.g. cars) in
a database, and answer queries about their position (e.g.,
How far is the car with license plate RWW860 from the
nearest hospital?) the car’s position has to be continuously
updated. This is unsatisfactory since either the position
is updated very frequently (which would impose a serious
performance and wireless-bandwidth overhead), or, the an-
swer to queries is outdated. Furthermore, it is possible that
due to disconnection, an object cannot continuously update
its position.

In this paper we propose to solve this problem by rep-
resenting the position as a function of time; it changes as
time passes, even without an explicit update. So, for ex-
ample, the position of a car is given as a function of its mo-
tion vector (e.g., north, at 60 miles/hour). In other words,
we consider a higher level of data abstraction, where an ob-
ject’s motion vector (rather than its position) is represented
as an attribute of the object. Obviously the motion vector
of an object can change (thus it can be updated), but in most
cases it does so less frequently than the position of the ob-
ject.�Department of Electrical Engineering and Computer Science, Uni-
versity of Illinois, Chicago, IL 60607yDepartment of Electrical Engineering and Computer Science, Uni-
versity of Illinois, Chicago, IL 60607 CESDIS, NASA Goddard Space
Flight Center, Code 930.5, Greenbelt, MD 20771zArmy Research Laboratory, Aberdeen Proving Ground, MDxHughes Research Laboratories, Information Sciences Laboratory,
Malibu, CA

In this paper we propose a data model called Mov-
ing Objects Spatio-Temporal (or MOST for short) for
databases with dynamic attributes, i.e. attributes that
change continuously as a function of time, without being
explicitly updated. In other words, the answer to a query
depends not only on the database contents, but also on the
time at which the query is entered. Furthermore, we ex-
plain how to incorporate dynamic attributes in existing data
models and what capabilities need to be added to existing
query processing systems to deal with dynamic attributes.

Clearly, our proposed model enables queries that refer to
future values of dynamic attributes, namely future queries.
For example, consider an air-traffic control application, and
suppose that each object in the database represents an air-
craft and its position. Then the query Q = “retrieve all the
airplanes that will come within 30 miles of the airport in the
next 10 minutes” can be answered in our model. In [14] we
introduced a temporal query language called Future Tem-
poral Logic (FTL). The language is more natural and in-
tuitive to use in formulating future queries such as Q. Un-
fortunately, due to the difference in data models, the algo-
rithm developed in [14] for processing FTL queries does
not work for MOST databases. Therefore, in this paper we
develop an algorithm for processing an important subclass
of FTL queries for MOST databases.

The answer to future queries is usually tentative in the
following sense. Suppose that the answer to the above
query Q contains airplane a. It is possible that after the
answer is presented to the user, the motion vector of a
changes in a way that steers a away from the airport, and the
database is updated to reflect this change. Thus a does not
come within 30 miles of the airport in the next 10 minutes.
Therefore, in this sense the answer to future queries is ten-
tative, i.e. it should be regarded as correct according what
is currently known about the real world, but this knowledge
(e.g. the motion vector) can change.

Continuous queries is another topic that requires new
consideration in our model. For example, suppose that
there is a relation MOTELS (that resides, for example, in a
satellite) giving for each motel its geographic-coordinates,
room-price, and availability. Consider a moving car is-
suing a query such as ”Display motels (with availability
and cost) within a radius of 5 miles”, and suppose that the
query is continuous, i.e., the car requests the answer to the
query to be continuously updated. Observe that the an-
swer changes with the car movement. When and how of-
ten should the query be reevaluated? Our query process-

ing algorithm facilitates a single evaluation of the query;
reevaluation has to occur only if the motion vector of the
car changes.

We assume that there is a natural, user-friendly way of
entering into the database the current position and motion
vector of objects. For example, a point on a screen may rep-
resent the car’s current position1, and the driver may draw
around it, on the touch-sensitive screen, a circle with a ra-
dius of 5 miles; then s/he may name the circle C and indi-
cate that C moves as a rigid body having the motion vec-
tor of the car. This way the driver specifies a circle and its
motion vector, and the car’s computer can create a data rep-
resentation of the moving object. The computer can auto-
matically update the motion vector of C when it senses a
changes in speed or direction. In other applications, such
as air-traffic-control, there may be other means of entering
objects and their motion vector.

Generally, a query in our data model involves spatial ob-
jects (e.g. points, lines, regions, polygons) and their mo-
tion vector. Some examples of queries are: “Retrieve the
objects that will intersect the polygon P within 3 minutes”,
or, “Retrieve the objects that will intersect P within 3 min-
utes, and have the attribute PRICE � 100”, or, “Retrieve
the objects that will intersect P within 3 minutes, and stay
in P for 1 minute”, or “Retrieve the objects that will inter-
sect P within 3 minutes, stay in the polygon for 1 minute,
and 5 minutes later enter another polygon Q”.

For performance considerations, in answering queries
of this type, we would like to avoid examining each mov-
ing object in the database. In other words, we would like
to index dynamic attributes. The problem with a straight-
forward use of spatial indexing is that since objects are con-
tinuously moving, the spatial index has to be continuously
updated, an unacceptable solution. Therefore, we intro-
duce one possible method of indexing dynamic attributes,
which guarantees logarithmic (in the number of objects) ac-
cess time.

In summary, in this paper we introduce the MOST data
model whose main contributions are as follows.� A new type of attributes called dynamic attributes. A

method of indexing dynamic attributes is introduced.
The principles for incorporating dynamic attributes
on top of existing DBMS’s are outlined.� Adaptation of FTL as a query language in MOST. An
efficient algorithm is devised for processing queries
specified in an important subclass of FTL.

The rest of this paper is organized as follows. In sec-
tion 2 we introduce the MOST data model and discuss the
types of queries it supports in terms of database histories.
In section 3 we define the FTL query language, i.e. its syn-
tax and semantics in the context of MOST; we also demon-
strate the language using examples, and we introduce an al-
gorithm for processing FTL queries. In section 4 we dis-
cuss a method of indexing dynamic attributes. In section 51this position may be supplied, for example, by a Geographic Position-
ing System (GPS) on board the car.

we discuss several issues related to implementation of the
MOST data model, including: MOST on top of existing
DBMS’s, queries issued by moving objects, and distributed
query processing. In section 6 we compare our work to rel-
evant literature, and in section 7 we discuss future work.

2. The MOST data model

The traditional database model is as follows. A
database is a set of object-classes. A special database ob-
ject called time gives the current time at every instant; its
domain is the set of natural numbers, and its value increases
by one in each clock tick. An object-class is a set of at-
tributes. For example, MOTELS is an object class with
attributes Name, Location, Number-of-rooms, Price-per-
room, etc.

Some object-classes are designated as spatial. A spa-
tial object class has three attributes called X.POSITION,
Y.POSITION, Z.POSITION, denoting the object’s position
in space. The spatial object classes have a set of spatial
methods associated with them. Each such method takes
spatial objects as arguments. Intuitively, these methods
represent spatial relationships among the objects at a cer-
tain point in time, and they return true or false, indicating
whether or not the relationship is satisfied at the time. For
example, INSIDE(o,P) and OUTSIDE(o,P) are spatial rela-
tions. Each one of them takes as arguments a point-object o
and a polygon-object P in a database state; and it indicates
whether or not o is inside (outside) the polygon P in that
state. Another example of a spatial relation is WITHIN-A-
SPHERE(r, o1 , ... ,ok). Its first argument is a real num-
ber r, and its remaining arguments are point-objects in the
database. WITHIN-A-SPHERE indicates whether or not
the point-objects can be enclosed within a sphere of radiusr.

There may also be methods that return an integer value.
For example, the method DIST(o1; o2) takes as arguments
two point-objects and returns the distance between the
point-objects.

To model moving objects, in subsection 2.1 we intro-
duce the notion of a dynamic attribute, and in subsection
2.2 we relate it to the concept of a database history. In sub-
section 2.3 we discuss three different types of queries that
arise in this model.

2.1 Dynamic attributes

Each attribute of an object-class is either static or dy-
namic. Intuitively, a static attribute of an object is an at-
tribute in the traditional sense, i.e. it changes only when
an explicit update of the database occurs; in contrast, a
dynamic attribute changes over time according to some
given function, even if it is not explicitly updated. For ex-
ample, consider a moving object whose position in two-
dimensional space at any point in time is given by values
of the x; y coordinates. Then each one of the object’s coor-
dinates is a dynamic attribute.

Formally, a dynamic attribute A is represented by three
sub-attributes, A:value, A:updatetime, and A:function,
where A:function is a function of a single variable t that
has value 0 at t = 0. The value of a dynamic attribute
depends on the time, and it is defined as follows. At timeA:updatetime the value ofA isA:value, and until the next
update of A the value ofA at time A:time+ t0 is given byA:value + A:function(t0). An explicit update of a dy-
namic attribute may change its value sub-attribute, or its
function sub-attribute, or both sub-attributes.

In addition to querying the value of a dynamic at-
tribute, a user can query each sub-attribute indepen-
dently. Thus, the user can ask for the objects for whichX:POSITION:function = 5 � t, i.e. the objects whose
speed in the X direction is 5.

There are two possible inter-
pretations of A:updatetime, corresponding to valid-time
and transaction-time (see [8]). In the first interpretation, it
is the time at which the update occurred in the real world
system being modeled, e.g. the time at which the vehicle
changed its motion vector. In this case, along with the up-
date, the sensor has to send to the databaseA:updatetime.
In the second interpretation, A:updatetime, is simply the
time-stamp when the update was committed by the DBMS.
In this paper we assume that the database is updated in-
stantaneously, i.e. the valid-time and transaction-time are
equal.

When a dynamic attribute is queried, the answer re-
turned by the DBMS consists of the value of the attribute
at the time the query is entered. In this sense, our model
is different than existing database systems, since, unless an
attribute has been explicitly updated, a DBMS returns the
same value for the attribute, independently of the time at
which the query is posed. So, for example, in our model
the answer to the query: ”retrieve the current x-position
of object o” depends on the value of the dynamic attribute
X.POSITION at the time at which the query is posed. In
other words, the answer may be different for time-points t1
and t2, even though the database has not been explicitly up-
dated between these two time-points.

In this paper we are concerned with dynamic attributes
that represent spatial coordinates, but the model can be
used for other hybrid systems, in which dynamic attributes
represent, for example, temperature, or fuel consumption.

2.2 Database histories

In existing database systems, queries refer to the current
database state, i.e. the state existing at the time the query
is entered. For example, the query can request the current
price of a stock, or the current position of an object, but not
future ones. Consequently, existing query languages are
nontemporal, i.e. limited to accessing a single (i.e. the cur-
rent) database state. In our model, the database implicitly
represents future states of the system being modeled (e.g.
future positions of moving objects), therefore we can envi-
sion queries pertaining to the future, rather than the current

state of the system being modeled. For example, a moving
car may request all the motels that it will reach (i.e. come
within 500 yards of) in the next 20 minutes. To interpret
this type of queries, i.e. queries referring to dynamic at-
tributes, we need the notion of a database history, i.e. a se-
quence of database states.

A database state is a mapping that associates a set of
objects of the appropriate type to each object class. Each
database state has an associated time stamp. In the state, the
value of a dynamic attribute is taken to be the value of the
attribute at the time t = time stamp. Queries are interpreted
over database histories. A database history is an infinite se-
quence of database states, one for each clock tick, accord-
ing to a fixed global clock. Thus, the time stamps along the
database history are strictly increasing. Furthermore, the
value of an attribute A of an object may be different in two
consecutive database states for one of two reasons. First,A was explicitly updated, and second,A is a dynamic vari-
able that was not explicitly updated but its value is different
at the consecutive clock ticks.

At a particular point in time t, the database states with
a lower time-stamp than t are called the past database-
history. However, the history also contains an infinite num-
ber of states in the future database-history, i.e. states with
a time-stamp higher than the current time t. Each state in
the future history is identical to the state at time t, except for
the value of the dynamic attributes. The value of a dynamic
attribute A in a future state with time-stamp t0 is taken to
be the value of A at time t0. This value is computed ac-
cording to the A:value and A:function at time t. Thus,
although the database contents are identical throughout the
future database-history, the values of a dynamic attribute
may not be identical.

We would like to emphasize at this point that the
database history is an abstract concept, introduced solely
for the providing formal semantics to our temporal query
language, FTL. The database history does not consume
space, since we do not save information about the history.

2.3 Three types of MOST queries

A query is a predicate over the database history (rather
than a predicate over a single database state, as in tradi-
tional databases). The answer to a query is defined when
the predicate is satisfied, and it consists of the set of in-
stantiations of the variables that satisfy the predicate. In
our model we need to distinguish between three types of
queries; instantaneous, continuous and persistent. The
same query may be entered as instantaneous, continuous
and persistent, producing different results in each case.
These types differ depending on the history on which the
query is evaluated, and on the evaluation time. In contrast,
in traditional databases the situation is simpler. There are
two types of queries, instantaneous and continuous. An
instantaneous query is a predicate on the current database
state, and a continuous query is a predicate on each one of
the future states.

Formally, an instantaneous query at time t is a query
evaluated on the infinite history starting at t, i.e. the time
when the query is entered. t is usually the time when the
query is entered. For example, the query Q = ”Display the
motels within 5 miles of my position”, when considered as
an instantaneous query returns a set of motels presented to
the user immediately after the query is evaluated.

Observe that an instantaneous query may refer to the fu-
ture history, and it may refer to more than one database
state. For example, ”Display the motels that I will reach
within 3 minutes ” refers to all the states with a time-stamp
between now and three minutes later.

Obviously, since an instantaneous query is evaluated on
an infinite history, its answer may be infinite. For example,
the query: ”Display the tuples (motel,reaching-time) repre-
senting the motels that I will reach, and the time when I will
do so” may have an infinite answer. To cope with this situ-
ation we will assume in this paper that a continuous query
expires after a predefined (but very large) amount of time.
There are other ways of dealing with this problem (they in-
volve a finite representation of infinite sets), but these are
beyond the scope of this paper.

To motivate the second type of query, assume that a sat-
isfactory motel is not found as a result of the instantaneous
query Q, since, for example, the price is too high for the
value. However, the answer toQ changes as the car moves,
even if the database is not updated. Thus, the traveler may
wish to make the query continuous, i.e. request the system
to regard it as an instantaneous query being continuously
reissued at each clock tick (while the car is moving), un-
til cancelled (e.g. until a satisfactory motel is found). For-
mally, a continuous query at time t is a sequence of instan-
taneous queries, one for each point in time t0 > t (i.e. the
query is considered on the infinite history starting at timet0). If the answer to a continuous query is presented to the
user on a screen, the display may change over time, even if
the database is not updated.

Clearly, continuously evaluating a query would be very
inefficient. Rather, when a continuous query is entered our
processing algorithm evaluates the query once, and returns
a set of tuples. Each tuple consists of an instantiation � of
the predicate’s variables (i.e. an answer to the query when
considered in the noncontinuous sense) and a time intervalbegin to end. The tuple (�; begin; end) indicates that � is
in the answer of the instantaneous queries from time begin
until the time end. The set of tuples produced in response
to a continuous query CQ is called Answer(CQ).

Obviously, an explicit update of the database may
change a tuple in Answer(CQ). For example, it is pos-
sible that the query evaluation algorithm produces the tu-
ple (o; 5; 7), indicating that o satisfies the query between
times 5 and 7. If the motion vector of o is updated be-
fore time 5, the tuple may need to be replaced by, say(o; 6; 7), or it may need to be deleted. Therefore, a contin-
uous query CQ has to be reevaluated when an update oc-
curs that may change the set of tuples Answer(CQ). In
this sense Answer(CQ) is a materialized view. However,

a continuous query in our model is different than a mate-
rialized view, since the answer to a continuous query may
change over time even if the database is not updated.

Finally, the third type of query is a persistent query. For-
mally, a persistent query at time t is a sequence of instan-
taneous queries on the infinite history starting at t. Ob-
serve that, in contrast to a continuous query, the different
instantaneous queries comprising a persistent query have
the same starting point in the history. These histories may
differ for different instantaneous queries due to database
updates executed after time t.

To realize the need for persistence, consider the queryR = ”retrieve the objects whose speed in the direction of
the X-axis doubles within 10 minutes”. Suppose that the
query is entered as persistent at time 0. Assume that for
some object o, at time 0 the value of the dynamic attribute
X.POSITION changes according to the function 5t (recall,t is time, i.e. the speed is 5). At time 0 no objects will be
retrieved, since for each object, the speed is identical in all
future database states; only the location changes from state
to state. Suppose further that after one minute the function
is explicitly updated to 7t, and after another minute it is ex-
plicitly updated to 10t. Then, the speed in the X direction
has changed from 5 at time 0 to 10 at time 2, and hence, at
time 2 object o should be retrieved as an answer to R. But
if we consider the query R as instantaneous or continuousowill never be retrieved, since starting at any point in time,
the speed of o is identical in all states of the future database
history. When entered as persistent, the query R is consid-
ered as a sequence of instantaneous queries, all operating
on the history that starts at time 0. At time 2 this history re-
flects a change of the speed from 2 to 4 within two minutes,
thus o will be retrieved at that time.

In summary, the three types of queries are illustrated in
the following figure.

database history -t
 �� -
H

Figure 1. database history
(a) An instantaneous query at time t is evalu-
ated on the history Ht (i.e. the future history
beginning at t).
(b) A continuous query at time t is a sequence
of instantaneous queries at each time t0 � t.
(c) A persistent query at time t is a sequence
of instantaneous queries, all at time t. The
queries are evaluated at each time t0 � t the
database is updated.

In contrast to continuous queries, the evaluation of per-
sistent queries requires saving of information about the way

the database is updated over time, and we postpone the sub-
ject of persistent query evaluation to future research. Ob-
serve that persistent queries are relevant even in the ab-
sence of dynamic variables. In [14] we developed an algo-
rithm for processing FTL persistent queries. Unfortunately,
that algorithm does not work when the queries involve dy-
namic variables.

Observe that continuous and persistent queries can be
used to define temporal triggers. Such a trigger is simply
one of these two types of queries, coupled with an action
and possibly an event.

3 The FTL language

In this section we first motivate the need for our lan-
guage (subsection 3.1), then we present the syntax (3.2) and
semantics (3.3) of FTL. In subsection 3.4 we demonstrate
the language through some example, and in subsection 3.6
we present our query processing algorithm.

3.1 Motivation

A regular query language such as SQL or OQL can be
used for expressing temporal queries on moving objects,
however, this would be cumbersome. The reason is that
these languages do not have temporal operators, i.e. key-
words that are natural and intuitive in the temporal domain.
Consider for example the query Q: “Retrieve the pairs of
objects o and n such that the distance between o andn stays
within 5 miles until they both enter polygon P ”.

Assume that for each predicate G there are functionsbegin time(G) and end time(G) that give the beginning
and ending times of the first time-interval during whichG is
satisfied; also assume that “now” denotes the current time.
Then the query Q would be expressed as follows.

RETRIEVE o,n
FROM Moving-Objects
WHERE begin time(DIST (o; n) � 5) � now
and end time(DIST (o; n) � 5) �
begin time(INSIDE(o; P)) ^ INSIDE(n; P)).

At the end section 3.2 we show how the query Q is ex-
pressed in our proposed language, FTL. Clearly, the query
in FTL is simpler and more intuitive. The SQL and OQL
queries may be even more complex when considering the
fact that the spatial predicates may be satisfied for more
than one time interval. Thus, we may need the functionsbegin time1 and end time1 to denote the beginning and
ending times of the first time interval, begin time2 andend time2 to denote the beginning and ending of the sec-
ond time interval, etc.

3.2 Syntax

The FTL query language enables queries pertaining to
the future states of the system being modeled. Since the

language and system are designed to be installed on top of
an existing DBMS, the FTL language assumes an underly-
ing nontemporal query language provided by the DBMS.
However, the FTL language is not dependent on a specific
underlying query language, or, in other words, can be in-
stalled on top of any DBMS. This installation is discussed
in section 4.1.

The formulas (i.e. queries) of FTL use two basic future
temporal operators Until and Nexttime . Other tem-
poral operators, such as Eventually , can be expressed in
terms of the basic operators. The symbols of the logic in-
clude various type names, such as relations, integers, etc.
These denote the different types of object classes and con-
stants in the database. We assume that, for each n � 0,
we have a set of n-ary function symbols and a set of n-ary
relation symbols. Each n-ary function symbol denotes a
function that takes n-arguments of particular types, and re-
turns a value. For example, + and * are function symbols
denoting addition and multiplication on the integer type.
Similarly,�;� are binary relation symbols denoting arith-
metic comparison operators. The functions symbols are
also used to denote atomic queries, i.e. queries in the un-
derlying nontemporal query language (e.g. OQL). We as-
sume that all atomic queries retrieve single values. For ex-
ample, the function “RETRIEVE (o.height) WHERE o.id
= 100” denotes the query that retrieves the height of an ob-
ject whose id is 100. Atomic queries can have variables
appearing in them. For example, “RETRIEVE (o.height)
WHERE o.id = y” has the variable y appearing free in it;
for a given value to the variable y, it retrieves the height of
the object whose id is given by y.

Functions of arity zero denote constants and relations of
arity zero denote propositions.

The formulas of the logic are formed using the func-
tion and relation symbols, the object classes and variables,
the logical symbols :;^, the assignment quantifier ,
square brackets [;] and the temporal modal operators Until
and Nexttime . In our logic, the assignment is the only
quantifier. It binds a variable to the result of a query in
one of the database states of the history. One of the ad-
vantages of using this quantifier rather than the First Order
Logic (FOL) quantifiers is that the problems of safety are
avoided. This problem is more severe when database histo-
ries (rather than database states) are involved. Also, the full
power of FOL is unnecessary for the sequence of database
states in the history. The assignment quantifier allows us to
capture the database atomic query values at some point in
time and relate them to atomic query values at later points
in time.

A term is a variable or the application of a function to
other terms. For example, time + 10 is a term; if x; y are
variables and f is a binary function, then f(x; y) is a term;
the query “RETRIEVE o.height WHERE o.id = y” speci-
fied above is also a term. Well formed formulas of the logic
are defined as follows. If t1; :::; tn are terms of appropriate
type, andR is ann-ary relational symbol, thenR(t1; :::; tn)
is a well formed formula. If f and g are well formed formu-

las, then :f , f ^g, f Until g, Nexttime f and ([x t]f)
are also well formed formulas, where x is a variable and t
is a term of the same type as x and may contain free vari-
ables; such a term t may represent a query on the database.
A variable x appearing in a formula is free if it is not in the
scope of an assignment quantifier of the form [x t].

For example, the following query retrieves the pairs of
objects o and n such that the distance between o andn stays
within 5 miles until they both enter polygonP (the FTL for-
mula is the argument of the WHERE clause):

RETRIEVE o,n
WHERE DIST (o; n) � 5
Until (INSIDE(o; P)) ^ INSIDE(n; P)
3.3 Semantics

Intuitively, the semantics are specified in the follow-
ing context. Let s0 be the state of the database when a queryf is entered. The formula f is evaluated on the history start-
ing with s0.

We define the formal semantics of our logic as fol-
lows. We assume that each type used in the logic is asso-
ciated with a domain, and all the objects of that type take
values from that domain. We assume a standard interpre-
tation for all the function and relation symbols used in the
logic. For example, � denotes the standard less-than-or-
equal-to relation, and + denotes the standard addition on
integers. We will define the satisfaction of a formula at
a state on a history with respect to an evaluation, where
an evaluation is a mapping that associates a value with
each variable. For example, consider the formula [x RETRIEV E(o)]NexttimeRETRIEV E(o) 6= x, that is
satisfied when the value of some attribute of o differs in two
consecutive database states. The satisfaction of the subfor-
mula RETRIEV E(o) 6= x depends on the result of the
atomic query that retrieves o from the current database, as
well as on the value of the variable x. The value associ-
ated with x by an evaluation is the value of o in the previous
database state.

The definition of the semantics proceeds inductively
on the structure of the formula. If the formula contains
no temporal operators and no assignment (to the variables)
quantifiers, then its satisfaction at a state of the history de-
pends exclusively on the values of the database variables
in that state and on the evaluation. A formula of the formf Until g is satisfied at a state with respect to an evaluation�, if and only if one of the following two cases holds: eitherg is satisfied at that state, or there exists a future state in the
history where g is satisfied and until then f continues to be
satisfied. A formula of the form Nexttimef is satisfied at a
state with respect to an evaluation, if and only if the formulaf is satisfied at the next state of the history with respect to
the same evaluation. A formula of the form [x t]f is
satisfied at a state with respect to an evaluation, if and only
if the formula f is satisfied at the same state with respect
to a new evaluation that assigns the value of the term t to x
and keeps the values of the other variables unchanged. A

formula of the form f ^ g is satisfied if and only if both f
and g are satisfied at the same state; a formula of the form:f is satisfied at a state if and only if f is not satisfied at
that state.

In our formulas we use the additional propositional
connectives _ (disjunction),) (logical implication) all
of which can be defined using : and ^. We will also
use the additional temporal operators Eventually andAlways which are defined as follows. The temporal op-
erator Eventually f asserts that f is satisfied at some fu-
ture state, and it can be defined as true Until f . Actu-
ally, in our context a more intuitive notation is often laterf , but we will use the traditional Eventually f . The tem-
poral operator Always f asserts that f is satisfied at all
future states, including the present state, and it can be de-
fined as : Eventually :f . We would like to emphasize
that, although the above context implies that f is evaluated
at each database state, our processing algorithm avoids this
overhead.

3.4 Examples

In this subsection, we show how to express some queries
in FTL. For expressive convenience, we also introduce
the following real-time (i.e. bounded) temporal operators.
These operators can be expressed using the previously de-
fined temporal operators and the time object. (see [14]).
Eventually within c (g) asserts that the formula g will
be satisfied within c time units from the current position.
Eventually after c (g) asserts that g holds after at least c
units of time. Always for c (g) asserts that the formula
holds continuously for the next c units of time. The for-
mula (g until within c h) asserts that there exists a fu-
ture instance within c units of time where h holds, and un-
til then g continues to be satisfied. Each of our example
queries have the form “RETRIEVE<target-list>WHERE<condition>”. Here <condition> is given by a FTL for-
mula.

The following query retrieves all the objects o that en-
ter the polygon P within three units of time, and have the
attribute PRICE � 100.

(I) RETRIEVE o
WHERE o:PRICE � 100^ Eventually within cINSIDE(o; P)

The following query retrieves all the objects o that enter
the polygon P within three units of time, and stay in P for
another 2 units of time.

(II) RETRIEVE o
WHERE Eventually within 3((INSIDE(o; P)^
Always for 2 INSIDE(o; P))

The following query retrieves all the objects o that en-
ter the polygon P within three units of time, stay in P for
two units of time, and after at least five units of time enter
another polygon Q.

(III) RETRIEVE o
WHERE Eventually within 3
[(INSIDE(o; P)^ Always for 2 (INSIDE(o; P))^
Eventually after 5 INSIDE(o;Q)]

3.5 Algorithm for evaluation of MOST queries

In this subsection, we present an algorithm for evaluat-
ing FTL queries in the MOST model. Our algorithm works
for a subset of queries given by conjunctive formulas. A
conjunctive formula is an FTL formula without negation.
In practice, most queries are indeed expressed by conjunc-
tive queries. For instance, all the example queries we use
in this paper are such. The reason for the restriction to con-
junctive formulas is safety (i.e. finiteness of the result);
negation may introduce infinite answers. The handling of
negation can be incorporated in the algorithm, but this is
beyond the scope of this paper. An additional restriction of
the algorithm is that it works only for continuous and in-
stantaneous queries (i.e. not for persistent queries).

For a query CQ specified by the formula f with free
variables (x1; :::; xk) the algorithm returns a relation calledAnswer(CQ) (this relation was originally discussed in
subsection 2.2), having k + 1 attributes. The first k at-
tributes give an instantiation � to the variables, and the last
attribute gives a time interval during which the instantiation� satisfies the formula.

The system uses this relation to answer continuous and
instantaneous queries as follows. For a continuous queryCQ, the system presents to the user at each clock-tick t, the
instantiations of the tuples having an interval that containst. So, for example, if Answer(CQ) consists of the tuples
(2, (10,15)), and (5, (12,14)), then the system displays the
object with id = 2 between clock ticks 10 and 15, and be-
tween clock-ticks 12 and 14 it also displays the object withid = 5.

For an instantaneous query, the system presents to the
user the instantiations of the tuples having an interval that
contains the current clock-tick.

The complete algorithm is presented in the appendix.

4 Indexing dynamic attributes

In this section we address the issue of indexing dynamic
attributes. The objective is to enable answering queries of
the form “Retrieve the objects that are currently in the poly-
gon P” without examining all the objects. The problem
with a straight-forward use of spatial indexing is that since
objects are continuously moving, the spatial index has to be
continuously updated, an unacceptable solution.

We introduce a possible method of indexing dynamic at-
tributes. Due to space limitations we only outline the main
ideas in the method. The method plots all the functions rep-
resenting the way a dynamic attribute A changes with time.
Thus, the x-axis represents time, and the y-axis represents
the value of A. For the sake of simplicity we assume that the

functions are linear. However, the ideas can be extended to
nonlinear functions.

This method is adapted from [5], although the model
there is different. We use a spatial index (see [9] for a sur-
vey of spatial access indexes) for each dynamic attribute A.
Spatial indexes use a hierarchical recursive decomposition
of space, usually into rectangles; the id of each object o is
stored in the records of representing the rectangles crossed
by the A:function of o.

Suppose now that the instantaneous query “Retrieve the
objects for which currently 4 < A < 5 ” is entered at
time 1:00am. Then, using the index we retrieve the records
representing the rectangles that intersect the rectangle 4 <A < 5 and 1� � < t < 1 + �. For each object id in these
records we check whether “currently” 4 < A < 5.

An update of o:A at time t involves updating the records
representing rectangles ending after time t; o is removed
from the records representing rectangles crossed by the old
function-line, and it is added to the records representing
rectangles crossed by the new function-line.

For an object moving in 2-dimensional space, the above
scheme can be mimicked using an index of 3-dimensional
space, with the third dimension being, obviously, time.

Observe that spatial indexing is limited to finite space.
Thus, in order to use this scheme we have to consider the
time dimension starting at 0 and ending at some time-pointT . Consequently, the index needs to be reconstructed ev-
ery T time units. Choosing an appropriate value for T is
an important future-research question.

Now suppose that the query “Retrieve the objects for
which currently 4 < A < 5 ” is entered at time 1:00am
as a continuous query, CQ. Then, using the index we re-
trieve the records representing the rectangles that intersect
the rectangle 4 < A < 5 and 1 < t < T . We con-
struct the set Answer(CQ) by examining each object ido in these records, and determining the time intervals when4 < o:A < 5.

5 Discussion

In this section we first discuss the implementation of our
proposed data model on top of existing DBMS’s (subsec-
tion 5.1), then we discuss architectural issues, particularly
the implications of disconnection and memory limitations
of computers on moving objects (5.2), and various query
processing strategies in a mobile distributed system (5.3).

5.1 Implementing MOST on top of a DBMS

Our system proposed in this paper (including an FTL
language interpreter) can be implemented by a software
system, called MOST, built on top of an existing DBMS.
Such a system can add the capabilities discussed in this
paper to the DBMS as follows. We store each dy-
namic attribute A as three DBMS attributes A:value,A:updatetime, and A:function. Any query posed to the
DBMS is first examined (and possibly modified) by the

MOST system, and so is the answer of the DBMS be-
fore it is returned to the user. In the rest of this subsec-
tion we sketch the modifications to queries and answers
of the underlying DBMS. For simplicity our exposition
will assume the relational model and SQL for the under-
lying DBMS. However, the same ideas can be extended to
object-oriented model.

If the query does not contain a reference to a dynamic
attribute nor does it contain temporal operators, the query
is simply passed to the DBMS and the answer returned to
the user.

Now assume that the query contains references to dy-
namic attributes, but not temporal operators. We will dis-
tinguish between references in the SELECT and WHERE
clauses. If the query contains a reference to a dynamic at-
tribute A only in the SELECT clause (i.e. in the target
list), then the MOST system modifies the query as follows.
Instead of A, the query retrieves the attributes A:value,A:updatetime, and A:function from the DBMS; and the
MOST system computes the value of A for each retrieved
object before returning it to the user.

Assume now that the WHERE clause is F , which is a
boolean combination of atoms (for example, an atom may
be A > 5). Consider first the case where there is only a
single atom p that refers to dynamic attributes in F . Be-
fore passing the original query Q to the DBMS the MOST
system replaces Q by two queries, Q1 and Q2. The trans-
formation is based on the following equivalence. F =(F 0 ^ p) _ (F 00 ^ :p), where F 0 is F with p replaced by
true and F 00 is F with p replaced by false. Q1 and Q2 are
defined as follows. The target list of Q1 and Q2 consists
of the target list of Q, plus the subattributes of the dynamic
attributes in p. The FROM clause of Q1 and Q2 is identi-
cal to that of Q. The WHERE clause of Q1 is F 0 and that
of Q2 is F 00. Q1 and Q2 are submitted to the underlying
DBMS, and the results are processed as follows before re-
turning them to the user. The atom p is evaluated on each
tuple in the result of Q1, and the atom:p is is evaluated on
each tuple in the result of Q2. (To do these evaluations the
MOST system computes the current values of the dynamic
attributes appearing in p using the retrieved sub-attributes.)
The tuples that do not satisfy the respective atoms are elim-
inated, and the projection of the union of the resulting tu-
ples on the original target list is returned to the user. If the
WHERE clause has multiple atoms referencing dynamic
attributes then we can give a function EV AL(Q) that per-
forms the above procedure recursively, each time eliminat-
ing one of the atoms containing a dynamic variable. If the
original query has k atoms refering to a dynamic variable
then, in the worst case, this might mean evaluating upto 2k
queries that do not contain dynamic variables. However, ifk is small this may not be a serious problem.

Observe that the above procedure does not use index-
ing of the dynamic attributes. In other words, the results
of Q1 and Q2 are examined in their entirety. If indexing
on the dynamic attributes is available, then we can modify
the above procedure as follows. Instead of evaluating the

atoms p and :p on each tuple retrieved by Q1 and Q2 re-
spectively, we retrieve the tuples that satisfy p and :p re-
spectively. Then we join the relation returned by Q1 with
the relation that satisfies p; similarly, we join the relation
returned by Q2 with the relation that satisfies :p. Observe
that in order for this procedure to produce correct results,
we must ensure thatF 0 and p are satisfied for the same tuple
in the cartesian product of the FROM relations. We ensure
this by including in the target list of all four queries, a key
of each relation in the FROM clause. The above method
can extended to nested SQL queries as well.

Now consider temporal operators. Note that the proce-
dure in the appendix given for processing FTL formulas
can be modified to take advantage of the query process-
ing capabilities of the DBMS. This is done as follows. In
the given FTL formula f , we identify the maximal non-
temporal subformulas. Let g be any such subformula. Note
that g may contain some free variables. As given in the ap-
pendix, corresponding to g we compute a relation G that
contains the set of all evaluations to the free variables ing that satisfy g. We compute this relation G by using the
decomposition method for non-temporal queries described
above. All the relations computed in this fashion are com-
bined using the procedure in the appendix, according to the
structure of the formula f .

5.2 Continuous queries from moving objects

Consider a centralized DBMS equipped with the MOST
capability. Suppose that a continuous query CQ is issued
from a moving object M . M may or may not be one of the
objects represented in the database. After the centralized
DBMS computes the set Answer(CQ), there are two ap-
proaches of transmitting it to M , immediate and delayed.

In the immediate approach, the whole set is transmit-
ted immediately after being computed. For each tuple(S; begin; end), the computer in M is presenting S be-
tween times begin and end. However, remember that ex-
plicit updates of the database may result in changes toAnswer(CQ). If so, the relevant changes are transmitted
to M .

The immediate approach may have to be adjusted,
depending on the memory limitations at M . For ex-
ample, M ’s memory may fit only B tuples, and the
set Answer(CQ) may be larger. In this case, the setAnswer(CQ) needs to be sorted by the begin attribute,
and transmitted in blocks of B tuples.

The delayed approach of
transmitting the set Answer(CQ) to M is the following.
Each tuple (S; begin; end) in the set is transmitted to M at
time begin. The computer at M immediately displays S,
and keeps it on display until time end.

Of course, intermediate approaches, in which subsets ofAnswer(CQ) are transmitted to M periodically, are pos-
sible.

The choice between the immediate and delayed ap-
proaches depends on several factors. First, it depends on

the probability that an update to Answer(CQ) can be
propagated to M (i.e. that M is not disconnected) before
the effects of the update need to be displayed. Second, it
depends on the frequency of updates toAnswer(CQ), and
the cost of propagating these updates to M .

5.3 Distributed query processing

Assume now that each object
represented in the database is equipped with a computer,
and the database is distributed among the moving objects.
In particular, assume that the distribution is such that each
object resides in the computer on the moving vehicle it rep-
resents, but nowhere else. This is a reasonable architecture
in case there are very frequent updates to the attributes of
the moving object. For example, if the motion vector of the
object changes frequently, then these changes may only be
recorded at the moving object itself, rather than transmit-
ting each change to other moving objects or to a centralized
database.

Assume that each query is issued at some moving ob-
ject. We distinguish between three types of MOST queries.
The first, called self-referencing query, is a predicate whose
truth value can be determined by examining only the at-
tributes of the object issuing the query. For example, “Will
I reach the point (a,b) in 3 minutes” or, “When will I reach
the point (a,b)” are self-referencing queries. Clearly, self-
referencing queries can be answered without any inter-
computer communication.

The second type of queries, called object queries, is a
predicate whose truth value can be determined for an object
independently of other objects. For example, “Retrieve the
objects that will reach the point (a,b) in 3 minutes” is an ob-
ject query; for each object we can determine whether or not
it satisfies the predicate, independently of other objects. To
answer an object query, a mobile computer needs to be able
to communicate with the other mobile computers. Assum-
ing this capability, there are two ways to processing such
a query issued from mobile object M . First is to request
that the object of each mobile computer be sent to M ; thenM processes the query. Second is to send the query to all
the other mobile computers; each computerC for which the
predicate is satisfied sends the object C to M . The second
approach is more efficient since it processes the query in
parallel, at all the mobile computers. The second approach
is also more efficient for continuous queries. In this case,
the remote computer C evaluates the predicate each time
the objectC changes, and transmitsC toM when the pred-
icate is satisfied. Using the first approach C would have to
transmit C to M every time the object C changes.

The third type of query, called relationship query, is a
predicate whose truth value can only be determined given
two or more objects. For example, the query “Retrieve the
objects that will stay within 2 miles of each other for at
lease the next 3 minutes” is a relationship query. The most
efficient way to answer a relationship query is to send all
the objects to a central location. The most natural loca-

tion is the computer issuing the query. When a relation-
ship query is presented at mobile computer M , it requests
the objects from all other mobile computers. Then M pro-
cesses the query.

6 Comparison to relevant work

One area of research that is relevant to the model and
language presented in this paper is temporal databases [12,
10, 11]. The main difference between our approach and
the temporal database works is that, by and large, those
works assume that the database varies at discrete points in
time, and between updates the values of database attributes
are constant ([12] uses interpolation functions to some ex-
tent). In contrast, here we assume that dynamic attributes
change continuously. Also, temporal languages other than
FTL can be used to query MOST databases, but any other
processing algorithm will have to be modified to handle dy-
namic attributes.

Another relevant area is constraint databases (see [6]
for a survey). In this sense, our dynamic attributes can be
viewed as a constraint, or a generalized tuple, such that
the tuples satisfying the constraint are considered in the
database. Constraint databases have been separately ap-
plied to the temporal (see [3, 4, 1]) domain, and to the
spatial domain (see [7]). However, the integrated appli-
cation for the purpose of modeling moving objects has not
been considered. Furthermore, this integrated application
has not been considered since the model is different than
ours, thus perhaps inappropriate for modeling moving ob-
jects. The main difference is that in constraint databases
all the tuples (or objects) that satisfy the constraint (in our
case the values of the function at all time-points) are con-
sidered to be in the database simultaneously. In contrast, in
our model these values are not in the database at the same
time; at any point in time a different value is in the database.

Methods in object oriented systems are also relevant to
our model. In an object-oriented system, the value of a dy-
namic attribute may be computed by a method (i.e. a pro-
gram stored with the data) using the sub-attributes of a dy-
namic attribute. However, in this case, as far as the DBMS
is concerned the method is a black-box, and the only way
to answer a query such as ”retrieve the objects that will in-
tersect a polygon P at some time between now and 5pm”
is to evaluate the query at every point in time between now
and 5pm. In contrast, in our model we “open” the black
box, i.e. expose to the DBMS the way the dynamic attribute
changes. Thus the DBMS can currently compute which ob-
jects will intersect the polygon in the future. Additionally,
the object oriented approach is not able to utilize indexing
on dynamic variables.

Another body of relevant work is location-dependent
software systems (e.g. [13, 15, 3]). There are three differ-
ences between that work and the our work presented in this
paper. First, although independent of a particular database
management system our work pertains to incorporation of
mobility in database systems. Second, our work pertains

to situations where the mobile clients are aware not only of
their current location, but also of their movement, i.e. their
future location. Indeed for airplanes and cars moving on
the highway, this is often the case. Third, in our model the
answer to a query depends not only on the location of the
client posing the query, but also on the time at which the
query is posed.

In our earlier work ([14]) we introduced FTL for speci-
fying trigger conditions in active databases. The algorithm
presented there does not work in the MOST model, since it
can only deal with static attributes.

7 Conclusion and future work

In this paper we introduced the the MOST data model
for representing moving objects. It has two main aspects.
First is the novel notion of dynamic attributes, i.e. at-
tributes that change continuously as time passes without
being explicitly updated. They are represented by func-
tions of time. Therefore a user can query future states of
database values. This motivates the second aspect of our
data model, namely the query language, FTL. It enables the
specification of future queries, i.e. queries that refer to fu-
ture states of the database.

In support of the new data model, in this paper we de-
veloped algorithms for processing queries specified in FTL,
we discussed a method of indexing dynamic attributes,
and we discussed methods for building the capabilities of
MOST on top of existing database management systems.
We also identified several types of queries arising in the
new data model, namely instantaneous, continuous and
persistent queries. We also discussed issues of query pro-
cessing in a mobile and distributed environment.

In the future, we intend implement the MOST data
model on top of an existing DBMS, e.g. Sybase. We intend
to further explore various processing methods for the three
types of queries, particularly in mobile and distributed en-
vironments. We intend to experimentally compare various
mechanisms for indexing dynamic attributes.

8 Appendix: The FTL query processing al-
gorithm

Let f(x1; x2; :::; xk) be a query with free variablesx1; x2; :::; xk respectively. We assume that the system has
a set of objectsO. Some of these objects are stationary and
the others are mobile. The positions (i.e. the X , Y andZ coordinates) of the stationary objects are assumed to be
fixed, while the positions of the mobile objects are assumed
to be dynamic variables. We also assume that we have a dy-
namic database variable time whose value at any instance
gives the actual value of the time at that instance. With-
out loss of generality we assume that the time when we are
evaluating the query is zero. The current database state re-
flects the positions of objects as of this time, and further-
more, we assume that for each dynamic variable we have

functions denoting how these variables change over time.
As a consequence, the values of static variables at any time
is the same as their value at time zero, and the values of
dynamic variables at any time in the future are given by the
functions which are stored in the database. Thus, the future
history of the database is implicitly defined.

For each subformula g of f (including f itself), our algo-
rithm computes a relationRg . Let g(x1; :::; xl) be a subfor-
mula containing free variables x1; :::; xl. The relation Rg
will have (l+1) attributes, the first l attributes correspond
to the l variables, and the last attribute denotes a time inter-
val. Each tuple in Rg denotes an instantiation � of values
to the free variables in g and an interval I during which the
formula g is satisfied with respect to �. The intervals corre-
sponding to different tuples that give identical values to the
corresponding variables will be non-overlapping, and fur-
thermore these intervals will not even be consecutive; the
non-consecutiveness of the intervals means that there is a
non-zero gap separating intervals in tuples that give iden-
tical values to corresponding variables; if the relation Rg
does not satisfy this non-consecutiveness property then we
can modify it to satisfy this property as follows; we simply
replace all tuples that give same values to the correspond-
ing variables and whose intervals are consecutive with a
single tuple whose interval is the union of the intervals of
the corresponding intervals.

The algorithm computes Rg , inductively, for each sub-
formula g in increasing lengths of the subformula. After
the termination of the algorithm, we will have the relationRf corresponding to the original formula f .

The base case in our algorithm is when g is an atomic
predicate R(x1; :::; xl) such as a spatial relation etc. In
this case, we assume that there is a routine, which for each
possible relevant instantiation of values to the free vari-
ables in g, gives us the intervals during which the rela-
tion R is satisfied. Clearly, this algorithm has to use the
initial positions and functions according to which the dy-
namic variables change. For example, if R is the predicateDIST (x1; x2) � 5, then the algorithm gives, for each rel-
evant object pair o1; o2, the time intervals during which the
distance between them is � 5. We assume that the rela-
tion given by the atomic predicates are all finite. For cases
where these relations are infinite in size, we need to use
some finite representations for them and work with these
representations; this is beyond the scope of this paper and
will be discussed in a later paper.

For the case when g is not an atomic predicate, we com-
pute the relation Rg inductively based on the outer most
connective of g as given below.

Let g = g1 ^ g2. In this case, let R1; R2 be the rela-
tions computed for g1 and g2 respectively, i.eRi = Rgi fori = 1; 2. For a given instantiation �, if g1 is satisfied during
interval I1 and g2 is satisfied during I2 then g is satisfied
during the interval I1 \ I2. The relation R for g is com-
puted by joining the relationships R1 and R2 as follows:
the join condition is that common variable attributes should
be equal and the interval attributes should intersect; the re-

trieved tuple copies all the variable values, and the interval
in the tuple will be the intersection of the of the intervals of
the joining tuples.

Let g = g1 Until g2, and let R1 and R2 be the relations
corresponding to g1 and g2 respectively. Let p+1; q+1 be
the number of columns in R1 and R2 respectively. Let t1
and t2 be any pair of tuples inR1 andR2 respectively, such
that they match on columns corresponding to the same vari-
ables. Let T1 be the set of tuples inR1 having the same val-
ues as t1 in the first p columns; and similarly let T2 be the
set of tuples in R2 having the same values as t2 in its first q
columns. Let I1 and I2 be the set of all intervals appearing
in T1 and T2, respectively. Note that no two intervals in I1
are consecutive, i.e. it is not the case that one of them starts
immediately after the other. Similarly, no two intervals inI2 are consecutive. We say that an interval [l1 u1] is com-
patible with another interval [m1 n1] if m1 � (u1+1) andn1 � u1, i.e the two intervals either overlap or they are con-
secutive. Suppose we have an interval [l1u1] in I1 which is
compatible with an interval [m1 n1] in I2. Then, it should
be easy to see that the formula g is satisfied throughout the
interval [l1 n1] with respect to the instantiation of variables
given by the tuples t1 and t2. A chain s is a sequence of in-
tervals [l1u1]; [m1n1]; ; [l2u2]; [m2n2]; :::; [lkuk]; [mknk]
such that for each i = 1; :::; k, [liui] is an interval in I1 and[mi ni] is an interval in I2, and the interval [li ui] is com-
patible with the interval [mi ni], and for i < k the inter-
val [mi ni] is compatible with the interval [li+1 ui+1]. For
the chain s as given above, let interval(s) denote the in-
terval [l1 nk]. It is easy to see that the formula g is satisfied
throughout interval(s)with respect to the instantiations of
the variables as given by the tuples t1 and t2.

We say that a chain s is maximal if it is not a subse-
quence of any other chain. All the maximal chains can be
computed by sorting the sets I1 and I2 individually and
running a modified merge algorithm. Let S be the set of
all proper, maximal sequences. Let A be the union of all
column names in R1 and R2 that correspond to variables.
The relation R for g will contain jAj + 1 columns. For
each s 2 S, the relation R will contain a tuple whose firstjAj columns contain the corresponding values from t1 ort2, and whose (jAj + 1)st column will contain the valueinterval(s). For every pair of joining tuples t1 in R1 andt2 in R2, the relation R for g will have the above tuples. In
the worst case, this algorithm may run in time proportional
to the product of the sizes of R1 and R2 respectively.

Let g = [y q] g1, and let R1 be the relation corre-
sponding to g1. The atomic query q may have some free
variables. For example, q may be height(o) denoting the
height attribute of the object given by the variable o. We as-
sume that the value of q is given by a relation Q with p+2
where the first p columns correspond to the free variables
in q, the (p+1)st column is the value of q and the last col-
umn is a time interval. Each tuple t in Q denotes the value
of the atomic query q during the interval specified by the
last column, and for the the instantiation of free variables
specified by the first p columns; the value of the query is

given by the p + 1st column. In above example, Q will
have three columns; the first column gives the object id, the
third column gives an interval and the second column gives
the height of the object during this interval. Now the rela-
tionR for g is obtained by joiningQ andR1 where the join
condition requires that columns corresponding to common
variables should be equal, the column corresponding to they variable in R1 should be equal to the (p+1)st column ofQ, and the time intervals should intersect. For two joining
tuples t1 in R1 and t2 in Q, in the output tuple we copy all
variable columns from t1 and t2 excepting the one corre-
sponding to variable y, and the time interval in the output
tuple will be the intersection of the time intervals in t1 andt2.

References

[1] M. Abadi and Z. Manna. Temporal logic programming.
Journal of Symbolic Computation, Aug. 1989.

[2] S. Acharya, B. Badrinath, T. Imielinski, and J. Navas. A
www-based location dependent information service for mo-
bile clients. Rutgers Univ. TR, July 1995.

[3] M. Baudinet, M. Niezette, and P. Wolper. On the representa-
tion of infinite data and queries. ACM Symposium on Prin-
ciples of Database Systems, May 1991.

[4] J. Chomicki and T. Imielinski. Temporal deductive
databases and infinite objects. ACM Symposium on Prin-
ciples of Database Systems, March 1988.

[5] G. Hjaltason and H. Samet. An indexing scheme for time
dependent data in clinsys. unpublished manuscript.

[6] P. Kanellakis. Constraint programming and database lan-
guages. ACM Symposium on Principles of Database Sys-
tems, May 1995.

[7] J. Paradaens, J. van den Bussche, and D. V. Gucht. Towards
a theory of spatial database queries. ACM Symposium on
Principles of Database Systems, 1994.

[8] R. Snodgrass and I. Ahn. The temporal databases. IEEE
Computer, Sept. 1986.

[9] H. Samet. The design and analysis of spatial data struc-
tures. Addison Wesley, 1990.

[10] R. Snodgrass. The temporal query language tquel. ACM
Trans. on Database Systems, 12(2), June 1987.

[11] R. Snodgrass and ed. Special issue on temporal databases.
Data Engineering, Dec. 1988.

[12] A. Segev and A. Shoshani. Logical modeling of tempo-
ral data. Proc. of the ACM-Sigmod International Conf. on
Management of Data, 1987.

[13] B. Schilit, M. Theimer, and B. Welch. Customizing mobile
applications. USENIX Symposium on Location Independent
Computing, Aug. 1993.

[14] P. Sistla and O. Wolfson. Temporal triggers in active
databases. IEEE Transactions on Knowledge and Data En-
gineering (TKDE), 7(3), June 1995.

[15] G. Voelker and B. Bershad. Mobisaic: An informa-
tion system for a mobile wireless computing environment.
Workshop on Mobile Computing Systems and Applications,
1994.

[16] J. Clifford and T. Isakowitz. On the Semantics of Tem-
poral Variable Databases. Proceedings of Fourth Inter-
national Conference on Extending Database Technology,
Cambridge, England, 1994

