
Nonmaterialized Motion Information in
Transport Networks

Hu Cao and Ouri Wolfson

Department of Computer Science,
University of Illinois at Chicago,

851 S. Morgan Street, Chicago, IL, 60607, USA
{hcao2, wolfson}@cs.uic.edu

Abstract. The traditional way of representing motion in 3D space-time
uses a trajectory, i.e. a sequence of (x,y,t) points. Such a trajectory may
be produced by periodic sampling of a Global Positioning System (GPS)
receiver. The are two problems with this representation of motion. First,
imprecision due to errors (e.g. GPS receivers often produce off-the-road
locations), and second, space complexity due to a large number of sam-
plings. We examine an alternative representation, called a nonmaterial-
ized trajectory, which addresses both problems by taking advantage of
the a priori knowledge that the motion occurs on a transport network.

1 Introduction

Location management, i.e. the management of transient location information,
is an enabling technology for location based service applications. It is also a
fundamental component of other technologies such as fly-through visualization
(the visualized terrain changes continuously with the location of the user), con-
text awareness (location of the user determines the content, format, or timing
of information delivered), augmented reality (location of both the viewer and
the viewed object determines the type of information delivered to viewer), and
cellular communication.

Usually, locations of a moving object are obtained by sensors and are given
as a set of spatio-temporal points of the form (x, y, t). Such a point indicates
that a moving object m (represented as a 2-dimensional point) was at geographic
location with coordinates (x, y) at time t. These spatio-temporal points may be
generated, for example, by a GPS receiver on board m. We will call such point
a GPS point, although it may be generated by other means (e.g. PCS network
triangulation, RFID).

The first problem arising in location management is that GPS receivers are
imprecise, and thus this raw data is noisy and error prone. Indeed, a data point
of a typical GPS receiver has an error that ranges from several feet to tens of
meters. In most cases, the motion occurs on a road network, and thus the error
of a GPS point can be corrected by “snapping” the point onto the road network.
This correction is very important for many natural queries such as “retrieve the

T. Eiter and L. Libkin (Eds.): ICDT 2005, LNCS 3363, pp. 173–188, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

174 H. Cao and O. Wolfson

(a) Example 1 (b) Example 2 (c) Example 3

Fig. 1. Figure 1(a) and Figure 1(b) illustrate the problem with naive snapping; Figure
1(c) illustrates space saving of nonmaterialized trajectory.

number of vehicles that traveled on the highway between exits 48 and 52 of I80
in the last hour”. Such a query is impossible to answer precisely if the locations
of moving objects are off-the-road, since vehicles traveling on parallel roads may
seem to have traveled on the highway, and vice versa. Similarly, the query “
What is the route taken by Bill today” requires translation of motion from raw
GPS data into a higher level of abstraction.

One may be tempted to propose a simple solution to the error-correction
problem, namely snap each GPS point to the closest road segment. However
this is a simplistic solution that may produce incorrect results. For example,
consider Figure 1(a) that illustrates a road network, and several GPS points.
Clearly the vehicle traveled on road segment A, and thus GPS point a needs to
be snapped to A, although B is the closest road segment to a. Another example is
shown in Figure 1(b). Clearly the vehicle traveled on road A, but this is deduced
only by examining the whole sequence of GPS points, and snapping GPS points
a, b onto the closest road segment will produce an incorrect result.

As a first result of this paper, we propose an efficient algorithm that, given
a trajectory T of a moving object1, a road network, and a GPS receiver error
bound ε, determines whether there exists another trajectory T ′, called the road-
snapped trajectory, such that: (i) T ′ is on the road network, and (ii) the distance
between T and T ′ is not higher than ε; and if so it finds T ′. In other words, we
find for a trajectory T , a possible route in the road-network that was followed
by the moving object.

The second problem addressed in this paper is data volume. In principle,
a GPS receiver can generate a new (x, y, t) point every second, and the num-
ber of moving objects may be hundreds of millions to billions. The problem
is compounded by the fact that one is interested in historical spatio-temporal
information for data mining.

Now consider that usually computation of the location at any point in time
is enabled by linear interpolation between consecutive trajectory vertices[7, 14].
Then the road-snapped trajectory may have more points than the original tra-
jectory, since it contains the snapped vertices of T , as well as the vertices of the

1 The trajectory of a moving object is a polygonal line in 3D that represents a piece-
wise linear function from time to location in two-dimensional space; the GPS points
are the vertices of the polygonal line. Thus the trajectory models a trip.

Nonmaterialized Motion Information in Transport Networks 175

route. For example, if the two consecutive GPS points a and b of Figure 1c are
snapped onto the depicted road, the trajectory between a′ and b′ will consist of
six vertices rather than two.

Thus one can immediately recognize the storage-space problem that location
based services applications will face, as well as the computation burden for pro-
cessing such large amount of information. Additionally, in online tracking where
the spatio-temporal points are transmitted from a moving object to a server,
this storage problem translates into a bandwidth and power problem.

Our nonmaterialized trajectory concept addresses this problem by separat-
ing the motion description into two components, namely the spatial component
represented by the road network (i.e. the map) that is common to all the tra-
jectories, and the temporal component that is specific to each trajectory. So, for
example, assuming constant speed motion, the nonmaterialized trajectory rep-
resenting the motion of Figure 1(c) consists of the street A and two time-points,
the time at a′ and the time at b′ (rather than six points used by the materialized
representation). Together with the coordinates of street A given by the map,
this nonmaterialized trajectory can provide the location of the moving object at
any point in time. And actually, the nonmaterialized trajectory has even fewer
points because it is a bounded error approximation of the original trajectory.
So, for example, assume that c′ precedes a′, and consider the nonmaterialized
trajectory T ′: “on street A, at time point tc at location c′ and at time point tb
at location b′”. If the distance of T ′ from the original trajectory is not higher
than ε, then a′ can be eliminated from the nonmaterialized trajectory. Thus the
nonmaterialized representation is an abstraction that is concise because it en-
capsulates two mechanisms, namely: separation of the temporal component from
the spatial one, and bounded error approximation. Obviously, the map will also
need to be kept. However, the same map is shared among many trajectories.

The concept of a nonmaterialized trajectory can be demonstrated by the
following analogy. When giving driving directions, one could indicate: starting
from (x1, y1) drive in a straight line to (x2, y2), from there drive in a straight line
to (x3, y3), etc. This would be analogous to a regular, i.e. materialized trajectory
given as a function from time to space. Nobody uses this form of directions.
Instead, directions are given as: drive on Halsted Street, make a left of Canal
street, then make a right on Division street. This is equivalent to the concept
of a nonmaterialized trajectory that gives the time → space function implicitly;
using the map, the function can be made explicit.

As a second result of this paper, we provide an efficient algorithm that con-
structs a nonmaterialized trajectory T ′′ for a given road-snapped trajectory T ′

and an error bound ε, such that the distance between the original trajectory T
and T ′′ is at most ε; furthermore, the size of T ′′ is minimum among all non-
materialized trajectories that can be constructed based on T ′. Why not find a
minimum-size nonmaterialized trajectory that is at distance ε from the original
trajectory T? We conjecture that this problem is NP-complete.

Then we analyze the errors to spatio-temporal queries introduced by the
approximation, and we show that these errors are bounded. In other words,

176 H. Cao and O. Wolfson

the nonmaterialized trajectory T ′′ (which is also a road-snapped trajectory) is
an approximation of the original trajectory T . What is the “distance” in the
answers of a given spatio-temporal query posed to T and T ′′? We show in this
paper that this distance is bounded for all natural spatio-temporal queries. One
may be tempted to discount these results, on the ground that it is intuitively
clear that if the error of the approximation is bounded (i.e. the distance between
T and T ′′ is bounded), then the error of the answer to each query is also bounded.
However, we show that this is not necessarily the case. Specifically, we show that
for every ε and δ there exists a trajectory T with a road-snapped trajectory T ′

such that the Euclidean distance between T and T ′ is at most ε, but the distance
between the answers to the query “where is the moving object at time 2pm” on
T and T ′ is higher than δ. Similarly, the error to other natural spatio-temporal
queries is unbounded in a sense made precise in this paper. The reason the our
snapping algorithm produces error-bounded approximations is that it does not
use the Euclidean distance, but another, called time uniform distance.

Trajectory snapping is supposed to correct location sensing errors, so one
may wonder why we are concerned about queries on the original trajectory T .
The answer is that one may never be sure what the actual motion function was,
and so we want to limit the damage in case the snapping is to an incorrect route.

In summary, the main results of this paper are as follows. First, we
provide an efficient algorithm that, given a trajectory T , a road network, and
an error bound ε, determines whether there exists an ε-distant road-snapped
trajectory; and if so it finds it. Second, we provide an algorithm that, for a
road-snapped trajectory T ′ and an original trajectory T and a bound ε, finds
a nonmaterialized trajectory T ′′ that is at distance at most ε from T , and has
minimum size among all nonmaterialized trajectories derived from T ′. Third,
we defined the notion of error boundness for spatio-temporal queries, and we
show that the time uniform distance used by our snapping algorithm is error-
bounded with respect to the spatio-temporal query types: where is a moving
object at a given time, range query, nearest neighbor, and join. We also show
that the Euclidean distance is not error bounded w.r.t. these query types.

The rest of the paper is organized as follows. In section 2 we introduce the
model. In sections 3, 4, and 5 we devise the first, second and third results dis-
cussed in the previous paragraph, respectively. In section 6 we compare our work
to relevant literature, and in section 7 we conclude the paper.

2 The Model

Representing the (location,time) information of the moving object as a trajectory
is a typical approach (c.f. [7, 14]). Point locations are represented as longitude-
latitude (x, y)-coordinates. We do not discuss moving objects with a third al-
titude dimension, although our results can be extended to this case. Time is a
real number t. Thus every (location,time) of a moving point object is given as a
3-dimensional (x, y, t) point. We do not discuss moving objects with an extent
such as weather phenomena.

Nonmaterialized Motion Information in Transport Networks 177

Definition 1. A trajectory T is a piece-wise linear function from the time in-
terval [t1, tn] to (X, Y) space. It is represented by the vertices of the function
polygonal-line T1 = (x1, y1, t1), T2 = (x2, y2, t2), ..., Tn = (xn, yn, tn), such that
for all i ∈ {1, . . . , n − 1}, ti < ti+1. For a given trajectory T , its projection on
the (X, Y) plane is called the route of T , denoted as R(T). The location of T at
time t is the value of the function at t.

A trajectory (or a materialized trajectory) defines the location of a moving
object in the (X, Y) plane as a function of time t. The vertices of the trajectory
are the known locations (e.g. the GPS points), and the trajectory function is
obtained by straight-forward linear interpolation between these locations. An
illustration of trajectory and its route is shown in Figure 2(a). Observe that
this representation cannot model nonlinear motion such as acceleration, but can
approximate it with arbitrary precision given enough trajectory vertices.

Time

X

Trajectory

RouteY

(a) A trajectory and
its 2D route.

(b) The distance be-
tween T1 and T2 is 7.

(c) Euclidean distance
E3 and time uniform
distance Eu.

Fig. 2. Distance between trajectories and distance functions

Next, for the purpose of trajectory snapping, we define a map. A map, or a
road network, is a directed graph; the nodes are labeled by (X, Y) coordinates
and represent junctions 2 and the arcs represent straight-line road segments be-
tween junctions. Each arc has a length, which is the Euclidean distance between
its two endpoints. The arcs of the map are partitioned into streets, where each
street is a path in the map, the streets are disjoint (i.e. we assume that 42nd-
st-going-east and 42nd-st-going-west are different streets), and every arc of the
map belongs to some street. We assume without loss of generality that each
street is acyclic.

Every point location on the map (node or point on an arc) can be also be
defined in the linear reference system, i.e. the distance from the beginning of a
street. Thus a point-location on the map can be defined in the Cartesian system
as an (x, y) location, or in the linear reference system as (street, distance).

2 A junction is not necessarily intersection of two streets, but maybe the vertex of a
polyline representing the geometry of the road.

178 H. Cao and O. Wolfson

Our objective is to construct a trajectory on the map that is an ε-
approximation of the original trajectory, i.e. at ε distance from the original
trajectory. For this purpose we need to define the distance between two trajec-
tories. The Hausdorff distance[2] between trajectories is defined as follows. Let
M be the distance between a 3D point and the 3D straight line between two con-
secutive trajectory vertices. Examples of two possible M ’s, the Euclidean and
the time uniform, are given at the end of this section. The distance dM (p, T)
between a 3D point p and a trajectory T is the minimum (among all straight
line segments of T) M -distance between p and a line segment of T . The Haus-
dorff M -distance from a trajectory T to another trajectory T ′ is defined as
D̃M (T, T ′) = maxp∈T d(p, T ′), i.e. the Hausdorff distance from T to T ′ is the
maximum distance from a point of T , to T ′. The symmetric Hausdorff distance
between T and T ′ (or, for short, the Hausdorff distance between two trajectories)
is defined as DM (T, T ′) = max(D̃M (T, T ′), D̃M (T ′, T)); i.e. it is the maximum
of the distances from T to T ′ and from T ′ to T (see Figure 2(b)).

Definition 2. Given a trajectory T , a road network N , a tolerance ε > 0, and
a distance M between a 3D point and a 3D line, the εM -road-snapped trajectory
T ′ is a trajectory whose route is a path in the graph N , and DM (T, T ′) ≤ ε.

In the above definition the tolerance ε is the sum of two maximum errors.
One is the error of the location sensing device such as a GPS receiver, and the
second is the error of the map. The ε-road-snapped trajectory is a possible actual
trajectory of the moving object.

Now we take the inner distance function M to be the three dimensional
time uniform distance Eu defined as follows. For a point p = (x0, y0, t0) on one
trajectory and a line segment l on the other, Eu(p, l) =

√
(x0 − xc)2 + (y0 − yc)2,

where pc = (xc, yc, t0) is the unique point on l which has the same Time value as
p (see Figure 2(c)); if such a point does not exist, then the time uniform distance
between p and l is infinity.

Observe that the time uniform distance is different than the Euclidean dis-
tance between p and l (see Figure 2(c)). Intuitively, the time uniform distance
between a trajectory point p and a trajectory line l is the distance between p
and the point on l that has the same time as p. Whereas the Euclidean distance
between p and l is the minimum distance between p and a point on l.

In section 5 we will discuss the Euclidean distance function, but until then
we will always assume that M is the time uniform distance and will omit M .

3 Road-Snapped Trajectory Construction

Assume that we are given a trajectory T , a map M , and a tolerance ε. In this
section we devise an efficient algorithm that determines whether or not there
exists an ε-road-snapped trajectory T ′. If so, it finds it. The algorithm constructs
a Snapping Configuration Graph (SCG), finds a certain path in SCG, and then
extracts T ′ from this path.

Nonmaterialized Motion Information in Transport Networks 179

The SCG construction uses the following definition. Given two polygonal
lines in the (X, Y) coordinate system, the ε-neighborhood of a vertex p in one
polygonal line is the set of 2D points on the other polygonal line that are at
distance at most ε from p. The concept is illustrated in figure 4(b).

The snapping configuration graph is constructed as follows. For the trajec-
tory T given as a sequence of vertices T1, . . . , Ti, . . . , Tn, and a map with arcs
(l1, . . . , lm), the nodes of SCG are of two types: (1) (Ti, lj) for each trajectory
vertex Ti and arc lj for which the Euclidean distance between the 2D projection
of Ti and lj is at most ε. Intuitively, this indicates that Ti can be snapped onto
lj . And (2) (lj ,

−−−−→
TiTi+1), when the distance between the front end-point of lj and

the (X, Y) projection of −−−−→
TiTi+1 is at most ε. Intuitively, this means that in the

road-snapped trajectory, some point between Ti and Ti+1 can be snapped onto
the front endpoint of lj .

The arcs of SCG indicate the possible pairwise sequences of individual nodes
to construct a road-snapped trajectory. The arcs of SCG are of four types:

• (1) (Ti, lj) → (Ti+1, lj), if the ε-neighborhood of the 2D projection of Ti+1 on
directed line segment lj is not totally behind (in lj) the ε-neighborhood of the
2D projection of Ti on lj . Intuitively, this arc indicates that if Ti is snapped onto
lj , then Ti+1 can be snapped onto lj as well. Observe that this can be done only
if “not totally behind” restriction is satisfied. In other words, there must be a
point p of lj that is in the neighborhood of Ti+1; and p appears on lj before
another point q of lj that is in the neighborhood of Ti.
• (2) (Ti, lj) → (lj ,

−−−−→
TiTi+1). Intuitively, this arc means that if one vertex of

the road-snapped trajectory is Ti snapped onto lj ; then the next vertex of the
road-snapped trajectory can be the point of the trajectory between Ti and Ti+1
that is snapped onto the front endpoint of lj . In this case, Ti+1 is snapped onto
another line segment of the map.
• (3) (lj ,

−−−−→
TiTi+1) → (Ti+1, lj′), where lj′ is one of the adjacent arcs that follows

lj in the map. Intuitively, this arc means that if one vertex of the road-snapped
trajectory is some point of the trajectory between Ti and Ti+1 that is snapped
onto the front endpoint of lj ; then the next vertex of the road-snapped tra-
jectory can be Ti+1 that is snapped onto an arc of the map that is adjacent
to lj .
• (4) (lj ,

−−−−→
TiTi+1) → (lj′ ,

−−−−→
TiTi+1), where lj′ is one of the adjacent arcs that follows

lj in the map, and the ε-neighborhood of the front end-point of l′j on the 2D
projection −−−−→

TiTi+1 is not totally behind that of lj . Intuitively, this arc means
that if one vertex of the road-snapped trajectory is some point of the trajectory
between Ti and Ti+1 that is snapped onto the front endpoint of lj ; then the
following vertex can be be another point between Ti and Ti+1 that is snapped
onto the front endpoint of l′j .

Intuitively, the four types of arcs represent four cases for adjacent vertices of
the road-snapped trajectory TT, T l, lT, ll; where T represents a vertex derived
from the trajectory and l represents a vertex derived from the map.

180 H. Cao and O. Wolfson

Theorem 1. Given a trajectory T = T1, . . . , Tn, a map M , and a tolerance ε,
there exists an acyclic path π in SCG starting at a node (T1, l) and ending at a
node (Tn, l′) if and only if there exists an ε-road-snapped trajectory T ′.

The above theorem provides the necessary and sufficient condition for the
existence of an ε-road-snapped trajectory, and its proof3 is constructive, i.e. it
finds the trajectory. It is easy to see that the time complexity of the algorithm
is O(nm2) for a trajectory with n vertices and a map with m arcs at distance
ε from T . Observe that the complexity does not depend on the total number of
arcs in the map, only on the ones that are at distance ε from the trajectory.

Assume now that there exists a trajectory T ′ whose route is on the map M ,
such that T ′ is at distance at most ε from T . A route R of such a trajectory is
called a feasible route of T . Given the path π (see Theorem 1), its feasible route
is: the set of arcs that appear in π, either in the first component of a node, or in
the second. By construction of SCG, this is a path in the map. This procedure
of constructing a SCG and finding a feasible route is illustrated in example 1.
Example 1. Consider the map M and the trajectory T shown in Figure 3(a).
The map is drawn as a directed graph with 17 directed arcs l1, . . . , l17. The
trajectory consists of six trajectory vertices from T0 to T5, shown as the dashed
polygonal line in Figure 3(a). The arrowed lines indicate that the corresponding
vertex has an ε-neighborhood in the line segment to which it points.

(a) The road network and
trajectory.

(b) The snapping configuration graph.

Fig. 3. Example of snapping configuration graph

Figure 3(b) depicts the snapping configuration graph generated from the map
and the trajectory in Figure 3(a). There are 15 nodes in the SCG. The labels of
the SCG arcs indicate the arc types. The connected nodes are colored white and
the isolated ones are in gray. Especially observe that (T3, l13) → (T4, l13) is not
a valid arc since the ε-neighborhood of the 2D projection of T4 on l13 is behind
that of T3. The nodes that pertain to the start trajectory vertex and the end
trajectory vertex are illustrated by double circles. According to Theorem 1, a

3 The proof and the proofs of other theorems are omitted, due to space constraint.

Nonmaterialized Motion Information in Transport Networks 181

road-snapped trajectory of T exists since there is a path π from (T0, l6) to (T5, l8)
and it is the only one in the SCG. Thus, we can extract a road-snapped trajectory
T ′ with eight vertices T ′

0, T
′
1, T

′
2, . . . , T

′
7 which correspond nodes (T0, l6) to (T5, l8)

on π respectively. The feasible route R of T ′ is (l6, l9, l8). ��

4 Nonmaterialized Trajectory Construction

In this section we devise an algorithm that, given a path π in SCG, constructs a
nonmaterialized ε-road-snapped trajectory T ′′ of minimum size. The route R of
T ′′ is the feasible route of π and T ′′ has minimum size among all nonmaterialized
trajectories on R.

We start with the definition of a nonmaterialized trajectory. Intuitively, a
nonmaterialized trajectory describes the motion in the linear reference system.
For example, started at 0.2 mile-post of Broadway-north (the mile-post simply
indicates location from the beginning of the street) at 2pm and drove to the
3.2 mile-post, then turned on 42nd street-west at 2.2 mile-post at 2:10pm, etc.
Formally, a nonmaterialized trajectory is defined as follows.

Definition 3. (Trajectory, Nonmaterialized) Consider a map M consisting
of a set of streets P . A nonmaterialized trajectory T is a function from time to
map locations represented as a sequence of tuples (〈p1, l1, t1〉, . . . , 〈pm, lm, tm〉),
where each pi is a street in P , li is a real number that indicates T ’s location at
time ti in pi’s linear reference coordinate. The location of T at any time-point
between ti and ti+1 is the linear interpolation between (li, ti) and (li+1, ti+1)
along pi. The nonmaterialized trajectory T must be consistent with the transport
network N , in the following sense. For every two adjacent tuples (pi, li, ti) and
(pi+1, li+1, ti+1) of T , if their streets are different, then pi must intersect pi+1 at
the distance li+1 from the beginning of pi+1.

This concept is illustrated in example 2.

Example 2. What is the nonmaterialized view of trajectory T ′ in Example 1?
Assume that we have constructed a road-snapped trajectory T ′ from the path π
and the route R = (l6, l9, l8). Further assume that R is on two streets S1 and S2,
where l6 is on S1 from the 3.2 mile-post to 3.6 mile-post, l9 is on S2 from the 0.3
mile-post to the 1 mile-post, and l8 is on S2 from the 1 mile-post to the 1.4 mile-
post. The first vertex T ′

0 of T ′ is on l6 at the 0.1 mile-post from the intersection
of l2 and l6 at 1:00pm. The second vertex T ′

1 is on l6 at the 0.2 mile-post from
the intersection of l2 and l6 at 1:01pm. The third vertex T ′

2 is on l6 at the 0.3
mile-post from the intersection of l2 and l6 at 1:03pm. The fourth vertex T ′

3 is
at the intersection of l6 and l9 at 1:06pm. The fifth vertex T ′

4 is the snapping
of T3 on l9 at the 0.2 mile-post from the intersection of l6 and l9 at 1:09pm.
The sixth vertex T ′

5 is the snapping of T4 on l9 at the 0.5 mile point from the
intersection of l6 and l9 at 1:11pm . The seventh vertex T ′

6 is at the intersection
of l9 and l8 at 1:14pm. The last vertex T ′

7 is on l8 at the 0.2 mile-post from
intersection of l9 and l8 at 1:16pm . Then, the nonmaterialized representation

182 H. Cao and O. Wolfson

of T ′ is the sequence (S1, 3.3, 1:00pm), (S1, 3.4, 1:01pm), (S1, 3.5, 1:03pm),
(S2, 0.3, 1:06pm), (S2, 0.5, 1:09pm), (S2, 0.8, 1:11pm),(S2, 1, 1:14pm),(S2, 1.2,
1:16pm). Note that the size of this representation is eight, longer than the size of
the original trajectory, because, as mentioned in the introduction, it represents
both the vertices of trajectory and the road network. ��

A nonmaterialized trajectory can easily be transformed to the equivalent
materialized representation, in linear time, by traversing, in sequence, the tuples
of the nonmaterialized representation, and for each one, interpolating the arrival
time at every vertex of the route. Similarly, one can transform in linear time a
road-snapped materialized trajectory T into a nonmaterialized one by creating
a nonmaterialized tuple for each vertex of T .

The nonmaterialized trajectory is created based on the feasible route R and
the SCG path π found in the previous section. The number of tuples in the
nonmaterialized trajectory is minimum for the path π.

The Nonmaterialized Trajectory Construction (NTC) algorithm starts with a
feasible route R and a trajectory T and constructs the nonmaterialized trajectory
for each street S of R, i.e it works one street at a time, starting from the first to
the last. If the same street appears on the feasible route more than once, then
the procedure is repeated for each occurrence of the street on R. For ease of
exposition assume that the feasible path consists of a single street S.

(a) ε-neighborhood
bars

(b) (x, y) space (c) Nonmaterialized
trajectory

Fig. 4. Nonmaterialized trajectory construction in the linear reference/time space

The NTC algorithm constructs the minimum size nonmaterialized trajectory
in the (m, t) two-dimensional space. It uses the following result.

Theorem 2. If there exists an acyclic path π in SCG starting at a node (T1, l)
and ending at a node (Tn, l′), then each vertex Ti of the trajectory T appears in
π as the first component of a node, at most once.

The procedure is as follows. In the (m, t) space the t axis is the time linear
reference built based on trajectory T , and the m axis is the street linear reference.
So if the trajectory starts at 2pm and ends at 3pm the t axis has these endpoints.
And if the feasible route starts at the 2.3 milepost of S and ends at the 40.5
mile-post, the m axis has 2.3 and 40.5 as the endpoints (see Fig. 4). Observe
that since each street is acyclic, each arc of the map appears in m at most once.

Nonmaterialized Motion Information in Transport Networks 183

NTC then constructs an m-(vertical) line segment for each vertex v of T , and a
t-(horizontal) line segment for each arc u represented in m (Fig. 4(a)).

The vertical line segment for v is constructed as follows. According to The-
orems 1 and 2 there is exactly one node (v, l) in the SCG path π, and l is
represented in m at most once. If l is represented in m, then consider the ε-
neighborhood on l of the projection of v on the (X, Y) space. Assume that this
neighborhood in the m coordinate is (m1,m2). Then we draw the vertical bar
(m1,m2) at the time corresponding to v on t (see Figure 4(a)).

The horizontal line segment for the arc u is constructed as follows. Since there
is a single street in the feasible path, in the SCG path π there is exactly one
node (u,

−−−−→
TiTi+1). Then, in the (X, Y) space, compute the ε-neighborhood of the

front-end point of u on the projection of −−−−→
TiTi+1. Assume that this neighborhood

in the t coordinate is [t1,t2]. Then we draw the horizontal bar of length t2 − t1
at the linear reference point which is the front-end of u (Fig. 4(a)).

To construct the nonmaterialized trajectory, we proceed as follows. Let m =
f(t) be some piecewise linear monotonic function that stabs all the line segments
constructed by the above procedure. If the vertices of its polygonal line are
(t1, m1), (t2, m2), ...(tn, mn), then this sequence is a nonmaterialized trajectory
on the street S.

This NTC procedure is illustrated in example 3.
Example 3. Figure 5 illustrates the nonmaterialized trajectory construction pro-
cedure. It is applied to the road-snapped trajectory of Example 1. The trajectory
is of eight vertices corresponding to eight nodes in π, which are labeled by the
first components of the node in Figure 5. We combine the construction of non-
materialized trajectory on two streets S1 and S2 in one figure. We first construct
the time linear reference/street linear reference space (m, t). Next, the horizon-
tal/vertical line segment for each node in path π is computed, shown as the bars
in the figure. For each street that route R = (l6, l9, l8) travels, we find a minimal-
size (i.e. minimum number of vertices) polyline stabbing. We stab all the bars of
street S1(l6) using one straight line. Then, from the bars of the intersection of l6
and l9, we stab the rest of the bars on street S2 (l9 and l8) with a two piece poly-
line. Writing down the street name, the m and t value for each dot in the figure,
we get the nonmaterialized representation of trajectory T on map M . Note that
the size of the nonmaterialized trajectory is four and T has six vertices. In this
sense, the figure shows the data reduction aspect of our approach. ��

Fig. 5. Constructing the nonmaterialized trajectory

184 H. Cao and O. Wolfson

The question now is what ensures that a piece-wise linear function required by
the above theorem exists? The answer is given by Theorem 1. Namely, if the path
π exists there is a nonmaterialized trajectory, and therefore a stabbing. We are
interested in a stabbing that has a minimum number of straight line segments,
because this will ensure a minimum number of tuples in the nonmaterialized
trajectory for π. This can be done using the results of [9, 12]. It provides a
greedy algorithm for stabbing n line segments with a polygonal line of minimum
size in linear time.

Theorem 3. For every trajectory T , map M , and positive real number ε, a
nonmaterialized trajectory T ′′ created with the above algorithm satisfies: (1) The
route R(T ′′) is a path in the map. (2) The distance between the original trajec-
tory T and T ′′ at most ε. (3) It has minimum size among all nonmaterialized
trajectories on R(T ′′).

The total number of vertical and horizontal bars is O(n + m), each bar can
be constructed in constant time, and the piecewise linear stabbing m = f(t)
can be constructed in linear time, using the approach in [9]. Therefore, the time
complexity of the NTC algorithm is O(n + m). Thus, the time complexity of
finding the nonmaterialized trajectory is dominated by the previous step of the
algorithm (finding π), and is O(nm2).

5 Bounded Error of Spatio-temporal Queries

Our proposed nonmaterialized trajectory T ′′ is a road-snapped trajectory at
distance ε from T . In this section we will analyze the relationship between a
trajectory and its road-snapped trajectory with respect to the error in answer-
ing spatio-temporal queries. We show that in general, although the distance
between a trajectory T and its road-snapped trajectory T ′ is bounded, the error
of spatio-temporal queries may be unbounded. In other words, distance between
the answer to a query on T and the same query on T ′ may be arbitrarily large.
Particularly, even if the Euclidean distance between T and T ′ is bounded, then
this undesirable phenomenon, namely unbounded query errors, may occur. We
also show that this undesirable behavior does not occur for the road-snapped
trajectories produced by the algorithm introduced in this paper. The reason is
that the algorithm uses the time uniform distance between T and T ′.

We consider the following basic spatio-temporal query types, whose semantics
for a trajectory T = (x1, y1, t1), (x2, y2, t2), ..., (xn, yn, tn), are as follows:
• where at(T , t) – returns the location of the trajectory T at time t.
• intersect(T, P, t1, t2) – is true if the location of T is inside the convex polygon
P sometime between t1 and t2. (This is also called a range query).

We first define the concept of query-error-boundedness for a distance-function
between trajectories. The concept is defined for a query type. Then we show that
the Euclidean distance is not query-error-bounded for the spatio-temporal query
types, but the time uniform distance is query-error-bounded for them.

Nonmaterialized Motion Information in Transport Networks 185

Now we explain the notion of query-error-boundedness. So far we restricted
the discussion to the time uniform distance between a trajectory T and its ε-
road-snapped trajectory T ′ (see def. 2). Here we relax this restriction. Let q(T)
denote the answer of some spatio-temporal query q with respect to a trajectory
T . Similarly, let q(T ′) denote the answer of the same query q when posed to
an εD-road-snapped trajectory T ′ of T . We say that the distance function D is
query-error-bounded for q when there exists a bound δ on the distance between
the two answers. More precisely, if we let dist(q(T),q(T’)) denote the distance
between the two answers, query-error-boundedness of D means that for every ε
there exists a δ such that for every trajectory T , dist(q(T),q(T’)) ≤ δ.

We formalize this notion for each of the query types, as follows. A distance
function D is error-bounded with respect to query-type q if for every tolerance
ε, there exists a positive number δ, called the answer error bound, such that for
every trajectory T and a εD-road-snapped trajectory T ′ of T (the rest of the
definition depends on the query-type as follows):
• where at – For every t for which both T and T ′ are defined, let (x, y) =
where at(T, t) and let (x′, y′) = where at(T ′, t). The distance between (x, y)
and (x′, y′) is bounded by δ, namely

√
(x′ − x)2 + (y′ − y)2 ≤ δ.

• intersect – For any polygon P , if intersect(T ′, P, t1, t2) is true, then there
exists a time t ∈ [t1, t2] such that the expected location of the original trajec-
tory T at time t is no further than δ from P ∪ interior of P . Conversely, if
intersect(T ′, P, t1, t2) is false, then for every t ∈ [t1, t2], the expected location of
the original trajectory T at time t is either outside P , or, if inside, it is within
δ of a side of P (i.e. it does not penetrate P by more than δ). Intuitively, this
means that if the εD-road-snapped trajectory T ′ intersects P , then T is not fur-
ther than δ from P ; and if T ′ does not intersect P , then T does not intersect P ,
or intersects it “very little”. Thus, the user, knowing that the query addresses
road-snapped trajectories, may decide to adjust the polygon P accordingly.

The following subsumption relationship holds among query types.

Theorem 4. Any distance function D is error-bounded w.r.t. the where at query
type if and only if it is error-bounded for the intersect query type.

Interestingly, the Euclidean distance is not error-bounded w.r.t. where at
query type. While the time uniform distance is error-bounded.

Theorem 5. The 3D Euclidean distance is not error-bounded w.r.t the where at
query type.

Theorem 6. The time uniform distance is error-bounded w.r.t. the where at
query type. Furthermore, for any tolerance ε, the answer-error-bound of the
where at query-type is ε.

Together with Theorem 4, the above result implies that the time uniform
distance is also error-bounded w.r.t. the intersect type. It can also be shown
that for the distance Eu, for any tolerance ε, the answer-error-bound of the
intersect query type is equal to ε.

186 H. Cao and O. Wolfson

6 Related Work

Recently, modeling, management, and query processing of network confined
movement has received significant attention[8, 14]. However, the required error-
correction to make the work applicable has been ignored. Our study provides the
necessary preprocessing step. Some papers adopted the similar idea of separat-
ing spatial and temporal components of trajectories [8]. However, their objective
was to improve the performance of indexing, whereas our objective here is to
correct errors, provide a higher level of motion abstraction, and reduce size.

Trajectory snapping is also studied for car navigation under the title map
matching [11, 16]. Most of those works take a heuristic approach to snapping,
and their main purpose is to determine in real time the current block the driver
is on. In order to do so they only consider the last GPS point, or the last few
GPS points. Therefore, when considering the snapped blocks one may obtain a
route that is not connected. However, since the purpose is simply to determine
the current location of a user in real-time, this drawback is not important for
their purpose. The two-page paper [17] provides a heuristic for map matching. To
the best of our knowledge, our road-snapped trajectory construction algorithm
is the first complete map matching algorithm, which determinates whether a
road-snapped trajectory exists for the given error bound.

Similar to map matching, researchers are also studying the matching prob-
lems between different spatial datasets[5], and the problem of robotic mapping[15].
However, the objectives of these papers are different than ours, and their tech-
niques are probably not directly applicable here.

Nonmaterialized trajectory representation of motion is related to data reduc-
tion, a very popular topic in the database research. When it comes to generating
the answers to the queries, there are two approaches: 1. The data is decompressed
before answering a query [6]; and 2. The compressed data is used to answer the
query, and the answer contains some error [4, 10]. Our approach is lossy, i.e we
do not recover the original trajectories after snapping. Recently wavelets have
become a popular paradigm for data reduction which provides fast and “reason-
ably approximate” answer to queries [4]. The original data is reduced to compact
sets of coefficients (wavelet synopses) which are used to answer the queries. The
main difference with our approach which provides deterministic error-bounds to
queries, is that these works either do not ensure a bound on the error of query
answers, or ensure an asymptotic/probabilistic bounds on the error. A similar
observation holds for the works which use histograms or sampling to compress
the data and provide a reasonably accurate answer to the queries (see [1]).

Finally, let us mention some previous work on data reduction by strong line-
simplification ([3][13]). These work did not address road-snapping or nonmate-
rialized trajectories, thus the line simplified trajectories may still be off the road
network. However, [3] did consider soundness of queries. The concept of error-
boundedness in this paper is a generalization of soundness to the case where the
vertices of the approximate trajectory are not necessarily a subset of those of
the original trajectory (in contrast to line simplification which imposes such a

Nonmaterialized Motion Information in Transport Networks 187

restriction). [13] also used the time uniform distance and studied the error and
the compression ratio experimentally.

7 Conclusions

With the proliferation of location based services and mobile devices including
sensors, computers, and GPS receivers, the importance of motion information
will increase tremendously. In this paper we addressed the problem of producing
a higher level of abstraction for motion data, based on constraints provided by
road networks. We introduced an algorithm for “adjusting” a given trajectory T
to fit the road network; the adjustment is called a road-snapped trajectory, T ′′,
and it has several properties. First, it is within a distance ε (the location-sensor
error) from T . Second, it is on the road network. Third, it is nonmaterialized,
i.e. it provides the temporal information separately from the spatial information
common to all the trajectories. Fourth, it is minimized in a local sense, i.e. for
a given materialized snapped trajectory. Fifth, it is error bounded with respect
to the spatio-temporal queries: where is a moving object at a given time, range
query, nearest neighbor, and join. In other words, the answers to any such query
posed on T and T ′ are close. We have shown that this property is not trivial
even though T and T ′ are ε-close; i.e. the property holds for the time uniform
distance metric, but not for the Euclidean metric. The time-complexity of the
algorithm is O(nm2), for a trajectory with n vertices and a map with m straight
line segments at distance ε from T .

References

1. Special issue on data reduction techniques. IEEE Data Engineering, 20(4), 1998.
2. H. Alt and L. J. Guibas. Discrete geometric shapes: Matching, interpolation, and

approximation A survey. Technical Report B 96-11, Institut für Informatik, Freie
Universität Berlin, 1996.

3. H. Cao, O. Wolfson, and G. Trajcevski. Spatiotemporal data reduction with de-
terministic error bounds. In DIALM-POMC’03, pages 33–42, 2003.

4. K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim. Approximate query
processing using wavelets. In VLDB 2000, Septermber 2000.

5. C. Chen, S. Thakkar, C. Knoblock, and C. Shahabi. Automatically annotating and
integrating spatial datasets. In SSTD’03, 2003.

6. Z. Chen, J. Gehrke, and F. Korn. Query optimization in compressed database
systems. In ACM SIGMOD 2001, pages 271–282. ACM Press, 2001.

7. L. Florizzi, R. H. Guting, E. Nardelli, and M. Schneider. A data model and data
structures for moving objects databases. Technical Report 260-10, Fern-Universität
Hagen, 1999.

8. E. Frentzos. Indexing objects moving on fixed networks. In Proc. 8th Int’l Sym-
posium on Spatial and Temporal Databases, SSTD’03, 2003.

9. S. K. Ghosh. Computing the visibility polygon from a convex set and related
problem. Journal of Algorithms, 12:75–95, 1991.

10. P. B. Gibbons, Y. Matias, and V. Poosala. Fast incremental maintenance of ap-
proximate histograms. In VLDB, 1997.

188 H. Cao and O. Wolfson

11. J. S. Greenfeld. Matching gps observations to locations on a digital map. In The
81th Annual Meeting of the Transportation Research Board, Washington D.C, 2002.

12. L. J. Guibas, J. E. Hershberger, J. S. B. Mitchell, and J. xS. Snoeyink. Approxi-
mating polygons and subdivisions with minimum link paths. In ISAAC’ 91, 1991.

13. N. Meratnia and R. A. de By. Spatiotemporal compression techniques for moving
point objects. In EDBT, pages 765–782, 2004.

14. D. Pfoser and C. S. Jensen. Indexing of network constrained moving objects. In
ACM GIS, pages 25–32. ACM Press, 2003.

15. S. Thrun. Robotic mapping: a survey. In Exploring artificial intelligence in the
new millennium, pages 1–35. Morgan Kaufmann Publishers Inc., 2003.

16. C. E. White, D. Bernstein, and A. L. Kornhauser. Some map matching algorithms
for personal navigation assistants. Transportation Research Part C, 8:91–108, 2000.

17. H. Yin and O. Wolfson. A weight-based map matching method in moving objects
databases. In SSTDM, 2004.

	Introduction
	The Model
	Road-Snapped Trajectory Construction
	Nonmaterialized Trajectory Construction
	Bounded Error of Spatio-temporal Queries
	Related Work
	Conclusions

