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ABSTRACT
In this work we investigate the quality bounds for the data
stored in Moving Objects Databases (MOD) in the settings
in which mobile units can perform an on-board data reduc-
tion in real time. It has been demonstrated that line sim-
plification techniques, when properly applied to the large
volumes of data pertaining to the past trajectories of the
moving objects, result in substantial storage savings while
guaranteeing deterministic error bounds to the queries posed
to the MOD. On the other hand, it has also been demon-
strated that if moving objects establish an agreement with
the MOD regarding the (im)precision tolerance, significant
savings can be achieved in transmission when updating the
location-in-time information. In this paper we take a first
step towards analyzing the quality of the “history in mak-
ing” in MOD, by correlating the (impact of the) agreement
between the server and the moving objects for on-line up-
dates in real time with the error-bounds of the data that
becomes a representation of the past trajectories as time
evolves.

Categories and Subject Descriptors
H.2.4 [Database Management Systems]: Moving Ob-
jects Databases
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1. INTRODUCTION AND MOTIVATION

An important aspect of any application that intends to pro-
vide some form of Location-Based Services (LBS)[25] is the
ability to store and retrieve the data pertaining to many
objects whose whereabouts-in-time information constantly
changes. Efficient management and query processing of the
mobile entities has spurred a large amount of research efforts
and generated many results in the field known as Moving
Objects Databases (MOD) [15].

Traditionally, there are three main models for representing
the future motion plans of the moving objects and, as a
consequence of the adopted model, handle the processing of
the continuous spatio-temporal queries:

1. At one extreme is the model in which the objects peri-
odically send their (location,time) updates to the MOD
server (leftmost part in Figure 1). Due to the fre-
quency of the updates, intelligent methodologies are
needed that will avoid constant re-evaluation of the
pending continuous queries, while still ensuring the
correctness of their answers [21, 20]. In order to bal-
ance the efficiency of the query processing with keeping
the MOD up-to-date, recent works have also addressed
“lazy” updating mechanisms [34].

2. In the “middle-land” is the model in which the mov-
ing objects are assumed to periodically send (location,
time, velocity) updates to the MOD server [26], as
illustrated by the middle portion of Figure 1. Effi-
cient algorithms for processing continuous queries in
MOD under this model were presented in [17, 18], and
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Figure 1: Modeling the motion plans of moving objects

[13, 14] addressed the distributed processing of such
queries, by delegating some of the responsibilities to
the moving objects themselves. One peculiar feature of
this model is that in-between two consecutive updates,
the objects are allowed to deviate from the expected
route which is calculated using the velocity parameter
of the most recent update, for as long as the deviation
is within certain tolerance bounds [33]. This is illus-
trated by the shaded circles in the middle portion of
Figure 1, which show the actual locations-in-time, as
opposed to the expected ones that would be along the
dotted arrowed line. We will elaborate this in more
details in Section 2.

3. The other extreme model is the one in which the en-
tire future motion plan of a given object is represented
as a trajectory (rightmost portion in Figure 1). Un-
der this model, each object is assumed to initially
transmit to the MOD server the information about
its start location, end location, and start time of the
trip, plus (possibly) a set of “to-be-visited” points. Us-
ing the information available from the electronic maps,
plus the knowledge about the distribution of the traffic
patterns in a given time-period, the server will apply
an A∗-like [11] variant of the time-aware Dijkstra’s al-
gorithm to generate the optimal travel plan [32]. A tra-
jectory is essentially a sequence of 3D points (2D geog-
raphy + time) of the form (x1, y1, t1), (x2, y2, t2), . . .,
(xn, yn, tn), where t1 < t2 < . . . tn and in-between two
points the object is assumed to move along a straight
line and with a constant speed. The peculiarity of this
model is that it enables answering continuous queries
pertaining to the further-future, however, the conse-
quence is that a disturbance of the traffic patterns in
a small geographic region may affect the correctness of
the queries in widely-dispersed areas and at different
time-intervals [8, 29].

An important observation, which is part of the motivation
for this work, is that when it comes to the past of the objects’

motion all three models, in a sense, converge, and represent
it as a trajectory (bottom part of Figure 1). These past
trajectories are important for various reasoning purposes.
For example, a delivery company may be interested in a
query such as: “Retrieve all the trucks that had an average
delivery-delay of more than 15 min. within the region of 3
miles around downtown Chicago, at least 3 days within the
past two weeks”. Similarly, a cellular service provider may
be interested in a query like: “Retrieve the motion patterns
of the users that have changed the base station more than 5
times within any 24 interval, during a period of two weeks”.
An algebra with a complete set of operators for various argu-
ment signatures, and algorithms for processing continuous
queries for the past trajectories were presented in [4, 19].
However, one significant problem that arises is the size of
the storage needed for the trajectories’ data. Namely, as-
suming that an update of the size 12B is generated by each
mobile user (vehicles, cellular subscribers, etc.) every 20
seconds in a large geographic area, then the the storage re-
quirements for the daily activities of 10 million objects would
be approximately 1TB. To deal with this, spatio-temporal
data reduction techniques were proposed in [5] that provided
large storage savings and ensured bounded error on the un-
certainty [30] of the trajectories, as well as the answers to
the popular spatio-temporal queries.

At the heart of the motivation for this work is the observa-
tion that the results in [5] introduced techniques which are
applicable to the complete-past trajectories. However, in
many applications the whereabouts-in-time information of
the moving objects arrives in a stream-like manner, as the
time evolves. Thus, in order to apply techniques proposed in
[5], one has to wait until the completion of the trips which,
in a sense, still imposes the storage overhead. Hence, it is
desirable to have some on-line data reduction mechanism
which will yield some storage savings throughout the “daily
life” of the MOD. However, then the question that arises is
what is the quality of the data generated via on-line data
reduction? Namely, one would not like a reduced-storage
representation that generates too large errors for the typical
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MOD queries. Since the results of [5] have established such
bounds for data reduction applied to past trajectories, we
asked if there can be some correlation between the quality of
the data generated on-line with some data-reduction tech-
nique(s) applied in real time1 AND the data representing
the historic information in MOD after data reduction has
been applied to the complete-past trajectories?

The main contribution of this work is that we establish
such correlation and, in particular, we demonstrate that the
dead-reckoning policy [33], when used by the objects whose
motion is modelled as a sequence of (location, time, veloc-
ity) updates, actually generates a special instance of the
reduced-storage representation when data reduction tech-
niques are applied to the completed past trajectories. We
provide analytical results which link the quality of the on-
line created historic data with the data obtained after reduc-
tion based on line-simplification techniques has been applied
to the complete-past trajectories. The practical implications
of our result is as follows: if the MOD server is to wait un-
til the end of the pre-established period (say, a day) for
the trajectories to be completed, the above-mentioned 1TB
of the storage will already be consumed, and the data re-
duction techniques will produce post-factum savings. How-
ever, if the data reduction is done in an on-line manner, at
the end of the day, the storage savings have been achieved,
without any other computational overhead. We have ex-
perimentally compared the storage savings generated by the
two approaches, and our results demonstrate that the on-
line data reduction yields savings that are acceptably close
to the ones applied to the complete-past trajectories.

The rest of this paper is structured as follows. In Section 2
we recollect some necessary background. Section 3 presents
our main results and Section 4 presents the experimental
observations. Section 5 positions our work with the related
literature and Section 6 concludes the paper and outlines
our vision for the future work.

2. PRELIMINARIES

Now we briefly recollect the necessary background and we
explain the main ideas behind the two approaches whose
correlation is investigated in this work.

2.1 Dead-Reckoning
Dead-reckoning is a policy which essentially represents an

agreement between a given moving object and the MOD
server regarding the updates transmitted by that particular
object. The main idea is that the communication between
them can be reduced (consequently, network bandwidth can
be spared) at the expense of the imprecision of the data in
the MOD representing the object’s motion. In order to avoid
an unbounded imprecision of the object’s whereabouts, the
agreement specifies a threshold δ that is a parameter of the
policy. The object sends its location and the expected ve-
locity to the MOD server and, as far as the MOD server is
concerned, the future trajectory of that object is an infinite
ray originating at the update point and obtained by extrap-
olation from the velocity vector. The information that the
MOD server has is the expected trajectory of the moving ob-
ject. However, each moving object is aware about its actual

1Essentially, with the evolution of time, every new clock-tick
shifts the present “now” into past.

location by periodically sampling it (e.g., using an on-board
GPS). For as long as its actual location at a given time
ti does not deviate by more than δ from the location that
the MOD estimates at ti using the information previously
transmitted, the object does not transmit any new updates.
When the actual distance deviates by more then δ from its
location on the expected trajectory, the object will send an-
other (location, time, velocity) update.
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Figure 2: Distance-based Dead-Reckoning Policy

What we described is commonly known as a distance-based
dead reckoning, and we illustrate it in Figure 2. At time t0
the object sent its location and the predicted velocity (ar-
rowed line) to the MOD server. The dashed line extending
the vector indicate the expected trajectory of the moving
object and the squares along it indicate the object’s posi-
tions at 6 time instances, as estimated by the MOD, while
the shaded circles indicate the actual positions of the ob-
ject. Typically, the actual trajectory is obtained by connect-
ing the GPS points with straight line-segments, assuming
that in-between two updates, the object was moving with a
constant speed. As illustrated, at t6 the distance between
the actual position and the MOD-estimated one exceeds the
threshold agreed upon (d6 > δ) and the object sends a new
update, at which point the MOD changes the expected tra-
jectory, based on that update. Thus, at t6, the MOD server
actually performs two tasks: 1. corrects its own “knowl-
edge” about the recent past and approximates the actual
trajectory between t0 and t6 with a straight line-segment,
which defines the actual simplification of the trajectory; and
2. generates another infinite ray corresponding to the future-
expected trajectory, starting at the last update-point, and
extrapolating the newly received velocity vector.

We reiterate that one of the benefits of the dead-reckoning
policy is the reduction of the communication between the
object and the MOD server, thus reducing the bandwidth
consumption. Various trade-offs between the update costs
and the (impacts on the) imprecision of the MOD data for
several different dead reckoning policies are investigated in
[33].

2.2 Line Simplification
The line simplification problem problem has been exten-

sively studied by the Computational Geometry community,
and its essential characteristics can be described as follows.
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Given a polyline PL1 with vertices {v1, v2, . . . , vn} in a re-
spective k-dimensional Euclidean space, and a tolerance ε,
construct another polyline PL′1 with vertices {v′1, v′2, . . . , v′m}
in the same space, such that m ≤ n and for every point
P ∈ PL1 its distance from PL′1 is smaller than a given
threshold: dist(P, PL′1) ≤ ε. The value of dist(P, PL′1)
actually depends on the distance-function chosen, and for
many geometrically-intuitive functions, it denotes the dis-
tance P, P ′, between P and a particular point P ′ ∈ PL′1.
For example, the shortest distance between a point M and
a line-segment QB in the Euclidian 2D space is the distance
MM ′ where M ′ is either the perpendicular projection of M
on the linde defined by Q and R, or (in case the projection
is outside the segment QR) the closest end-point (Q or R)
to M .

In case {v′1, v′2, . . . , v′m} ⊆ {v1, v2, . . . , vn}, PL′1 is a strong
simplification of PL1, which is the case that we consider in
this paper; otherwise, when {v′1, v′2, . . . , v′m} is an arbitrary
subset of the points in PL1 (not necessarily vertices), PL′1
is called a weak simplification. There are two distinct facets
of the minimal line simplification problem: 1. Given PL
and ε, minimize the number of points m in PL′ (known as
min-# problem) [6], and 2. Given PL and the ”budget” m
of the points in PL′, minimize the error ε (known as min-
ε problem). Optimal algorithms for both problems in 2D
settings are given in [6], and for 3D and higher dimensions
in [3], and the common Euclidian distance in the respective
spaces was used as a distance function.

It seems natural to adapt the results in [3, 6] for the 3D
space to trajectories in MOD. However, as demonstrated
in [5], a caution needs to be exercised when using the dis-
tance function. Namely, if the time is simply treated as a
Z-axis and the Euclidean distance in 3D is used in the algo-
rithms for line simplification, the reduced version of the tra-
jectory may yield an unbounded error for the answers to the
popular spatio-temporal queries, such as, range, (k) near-
est neighbor, (semi)join. To alleviate this and guarantee
a deterministic error-bound, in [5] the authors introduced
the distance function called three-dimensional time uniform
distance, denoted by Eu, which can be specified as follows.
Let pi = (xi, yi, ti), pj = (xj , yj , tj), such that ti < tj , and
ps = (xs, ys, ts). The Eu distance between ps and the 3D

line segment pipj is Eu =
p

(xs − xc)2 + (ys − yc)2 where
pc = (xc, yc, tc) is the unique point on pipj which has the
same time-value as ps (i.e., tc = ts). In other words, the
time uniform distance is the 2D Euclidean distance between
ps and the 3D point on pipj at time ts. Observe that, in
case ts 6∈ [ti, tj ], Eu is undefined.

Throughout the rest of this work, we will assume that Eu

distance is used.

3. THE QUALITY ASPECTS OF ON-LINE
DATA REDUCTION

Now we proceed with presenting the main results of this
work.

Assume that a given moving object on has established the
agreement with the MOD server that a distance-based dead-
reckoning policy (ddr) with the threshold δ will be used for
the updates. Let t0 denote the beginning time of on’s trip
and let tc (tc > t0) denote the current time. Assume that the
polyline corresponding to the actual trajectory of oi between

t0 and tc is Tr = {(x0, y0, t0), (x1, y1, t1), . . . , (xi, yi, ti),
. . ., (xc, yc, tc)}. Further, to simplify the argument assume
that along its trip during the time-interval [t0, tc], on has
already sent k updates to the MOD server at times tj1,
tj2, . . ., tjk = tc. Thus, as far as the MOD is concerned,
the past motion plan of the object on is a polyline corre-
sponding to the trajectory Tr′ = {(x0, y0, t0), (xj1, yj1, tj1),
. . . , (xjk, yjk, tjk)}, which is the actual simplification ob-
tained by consecutivelly updating the MOD in accordance
with the ddr policy, and (xjk, yjk, tjk) = (xc, yc, tc). Now,
we have the following:

Theorem 1. If Tr′ is an actual simplification obtained
using the ddr policy, then it is equivalent to a strong simpli-
fication of Tr obtained using the distance function Eu and
with a tolerance threshold ε ≤ 2 · δ.
Proof: Firstly, observe that since {(x0, y0, t0), (xj1, yj1, tj1),
. . . , (xjk, yjk, tjk)} ⊂ {(x0, y0, t0), (x1, y1, t1), . . . , (xi, yi, ti),
. . . , (xc, yc, tc)}, then Tr′ is indeed a strong simplification of
Tr (c.f. Section 2).

The rest of the proof is by induction on the value of k
– the number of updates sent by on to the MOD server in
accordance with the ddr (equivalently, the time tc at which
the last update is sent) and an illustration is provided in
Figure 3.
Base Case: (tc = t0) Since the trajectory has only one point,
the claim trivially follows.
Inductive Hypothesis: Assume that the statement is true for
a value of tc up to which k updates are sent by the moving
object on.
Inductive Step: Suppose that the (k + 1)-st update is sent
at the current time tc = now and the actual trajectory-
segment of on, as obtained with by the on-board GPS be-
tween tjk and tc is Trk = {(xk1, yk1, tk1), (xk2, yk2, tk2), . . . ,
(xkl,ykl, tkl), . . . , (xkm, ykm, tkm)}, where tk1 = tjk and tkm =
tc, illustrated by the points A = (xk1, yk1, tk1) and B =
(xc, yc, tc) in Figure 3 . However, in accordance with the ddr
policy, at the time-instance tk1, on has sent the information
[(xk1, yk1, tk1), ~Vk1] to the MOD server. Consequently, just
before the update, the MOD believes that at tc, the location
of on would be C = (XcMOD, YcMOD), such that XcMOD =
xk1+V x

k1 ·(tc−tk1) and YcMOD = yk1+V y
k1 ·(tc−tk1), where

V x
k1 (resp. V y

k1) is the x-component (resp. y-component) of
~Vk1.
Due to the properties of the ddr policy, we have that

BC = δ and the points B and C are in a same horizon-
tal plane t = tc. Once it has received the (k + 1)-st up-
date at tc, the MOD server will approximate the trajectory-
segment of on between tk1 and tc with the straight line-
segment (xk1, yk1, tk1)(xc, yc, tc) = AB (c.f. Figure 3). Let
D = (xkl, ykl, tkl) denote the point on the actual trajec-
tory segment of on which is the furthest one from AB, us-
ing the Eu is used as a distance function, and let F de-
note the corresponding point on AB at tkl. Also, let E =
(XEMOD, YEMOD, tkl) denote the point in which the MOD
was expecting on to be at tkl, according to the update sent
at tk1. Due to the triangular inequality, DF ≤ DE + EF ,
with the equality when the co-planar points D, E and F are
also collinear. However, in that particular case, we have that

4ABC and 4AFE are similar triangles and BC

EF
= tc−tk1

tkl−tk1
.

Hence, EF = BC · tkl−tk1
tc−tk1

and, since the ddr policy was

used, we have that DE < δ and tkl < tc, otherwise on
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Figure 3: ddr-based Data Reduction and Line Simplification

would have sent an update to the MOD server at tkl instead
of tc. Thus, we have the following: max(DF ) ≤ DE+EF <
δ + tc−tk1

tkl−tk1
· δ < 2 · δ. Consequently, at the time tc when

the MOD server has approximated the trajectory segment
Trk with the line segment AB, every point on the polyline
Trk is no further than ε = 2 · δ from AB, which implies that
AB is a strong simplification of Trk. Using the inductive
hypothesis, we get that Tr′∪AB is actually a strong simpli-
fication of Tr∪Trk, when Eu is used as a distance function
with tolerance ε. 2.

optimal simplification

Tr
o

trajectory
actual

Tr

vectorupdate

actual (ddr-based) simplification
Tr’

TX

Y

X

Figure 4: Distance Between Actual and Optimal
Simplifications

Although the on-line data reduction using the ddr policy
generates a strong simplification with respect to the past
history of the moving objects’ motion, there are two other
important aspects of the quality of data that need to be ad-
dressed:

1. What are the actual savings in the storage obtained via
the on-line simplification of the trajectory? Namely, if the
optimal line simplification algorithm [3] is applied offline to
the completed past trajectory of a given object, then we
know that the number of vertices (equivalently, the size of
the reduced trajectory) m is indeed the minimal possible
for a given ε (equivalently, δ). However, the ddr-based data
reduction is not guaranteed to generate a strong simplifi-
cation with minimal number of vertices for a given ε. Our
experiments provide a quantitative comparison of the stor-
age savings obtained via ddr policy vs. the optimal line
simplification algorithm [3, 6], as well as the heuristic ap-
proach known as the Douglas-Peuker algorithm [10, 16], as
a function of ε.
2. For a given ε, how “far off” is the actual simplification,
obtained on-line via ddr, from the optimal one that could
be generated at the end of the trip? More specifically, let
Tr denote the trajectory corresponding to the entire poly-
line of the motion of a given object, say, on. If the MOD
server has Tr available in its entirety, then it can apply the
optimal line simplification algorithm and obtain T or, which
is a strong simplification of Tr with minimum number of
points for a given tolerance ε. Also, let Tr′ denote the ac-
tual simplification of the on’s motion obtained in real time
via the ddr, with a tolerance threshold δ = ε

2
. An illustra-

tion is provided in Figure 4, where the thick solid polyline
indicates the complete trajectory Tr, and the dotted-arrow
lines indicate the updates sent by the particular moving
object. The solid polyline, which has only two segments,
represents the optimal simplification of the trajectory T or,
and the dashed polyline represents Tr′ – the actual simpli-
fication of Tr. Now, the question becomes, how far is Tr′

from T or? Typically (generalizing the discussion in Section
2.2), the distance between two curves is expressed in terms
of a Hausdorff distance, which can be explained as follows.
Let M denote the distance function used to measure the
distances in a given space, and let dM (P1, C2) denote the
distance between a point, say P1 ∈ C1, and the curve C2.
Then, the distance between the curves C1 and C2 is defined
as DM (C1, C2) = max(dM (P1, C2))(∀P1 ∈ C1). In our set-
tings, since the distance function used is Eu (c.f. Section
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2.2), we are interested in the value2 of DEu(Tr′, T or). As a
straightforward consequence of Theorem 1, we have that the
distance between the actual simplification and the (offline)
optimal one is DEu(Tr′, T or) ≤ 2 · ε.

We conclude this section with one more observation re-
garding some other consequences of the spatio-temporal data
reduction. Namely, once a line-simplification (or, for that
matter, any other data reduction) technique is applied to
the past trajectories, their representation in MOD will in-
evitably need to incorporate some uncertainty of the ob-
ject’s whereabouts at a given time. This, in turn, implies
that the MOD users will need to be aware about it and,
somehow, incorporate it in the (semantics of) the answers
to their queries of interest. Linguistics constructs and al-
gorithms for processing MOD queries with the uncertainty
model that corresponds to the one obtained when trajec-
tories’ data is reduced using line-simplification based tech-
niques, were presented in [30]. Since the actual simplifica-
tion obtained using the ddr policy is at a bounded distance
from the optimal simplification applied to the full past tra-
jectories, the results from [5] regarding the the errors of the
answers to the spatio-temporal queries can be carried over
verbatim. The main advantage of the uncertainty obtained
in a manner discussed in this paper, as opposed to the un-
certainty introduced when other data reduction techniques
are applied to spatio-temporal data (e.g., wavelets [12]) is
that the error of the answers to the popular spatio-temporal
queries is bounded [5]. The consideration of the other un-
certainty models for various MOD settings [7, 22] from the
perspective of on-line spatio-temporal data reduction, is be-
yond the scope of this paper and is a subject of our future
work.

4. EXPERIMENTAL RESULTS

We used a real trajectory set of 60 GPS trajectories in our
experiment. The trajectories were obtained from the GPS
receiver carried by one of our lab members during the driving
related to his various daily activities (commute, shopping,
etc.). Each trajectory represents a trip that occurred in the
Cook county and DuPage county of Illinois. Along each
trip, the location was sampled every second. The average
number of vertices per trajectory is 1465 and the average
length of a trajectory is 15.14 miles3. In order to generate
the ddr-based data for the experimental comparisons, we
used the following heuristics: initially (and after each sub-
sequent ddr-based update), we estimated the velocity vector
v as an average between the first two velocity vectors, calcu-
lated from the set of the first three GPS-sampled points, and
assuming constant speed between the consecutive samples.

The data reduction is expressed by the reduction ratio
(rr), which is number of vertices of the simplified trajectory
/ number of vertices of the original trajectory (i.e., the tra-
jectory before simplification). In other words, the storage
savings of the simplifications is (1 - rr). For each data re-
duction experiment we varied the simplification tolerance ε

2One may observe (c.f. [2]) that the Hausdorff distance with
Eu as a distance measure between two trajectories is equiva-
lent to the Freché distance between the corresponding routes
when their respective equations are represented as parame-
ters of time.
3see http://cs.uic.edu/ boxu/mp2p/gps data.html for more
details.

from 0.05 mile to 0.5 mile. All the experiments reported in
this paper were performed on a AMD64 3500 machine with
1G B DDR memory, running on Suse Linux.
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Figure 5: Comparing ddr savings vs. Douglas-
Peuker savings

Figure 5 presents the comparison between the savings ob-
tained using the ddr policy and the ones obtained when
the Douglas-Peuker algorithm [10] was applied to the en-
tire set of points representing the completed motion of the
objects. The X-axis represents the value of ε used in the
data-reduction process and one can observe that even for
very small values of ε, the storage savings using the on-line
data reduction are comparable to the ones obtained by the
Douglas-Peuker algorithm applied to the entire past trajec-
tory.
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Figure 6: Comparing ddr savings vs. Optimal Sav-
ings

Similarly, Figure 6 illustrates the comparison of savings
between the on-line reduced trajectory using ddr and the
post-trip reduced trajectory using the variant of the opti-
mal line simplification algorithm [6, 3], adapted to use the
Eu distance function. One may observe that the relative
storage savings obtained with the ddr based data reduction,
when compared to the savings obtained using the optimal al-
gorithm, are slightly worse than the ddr-based savings com-
pared to the ones obtained by the Douglas-Peuker algorithm.
However, the results still demonstrate that substantial sav-
ings can be achieved by on-line data reduction, that are
reasonably close to the ones generated by the optimal line
simplification algorithm, while still guaranteeing a bounded
error on the trajectory representation and, consequently, the
continuous queries posed to the MOD.
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An observation which is in order here is that besides the
storage savings demonstrated in Figure 5 and Figure 6 above,
one needs to keep in mind that the ddr-based data reduc-
tion was obtained on-line and, essentially was available at
the MOD at any point during its (evolving) history. Mean-
while, in order to generate reduced trajectory data using
line simplification based algorithms, one would have to wait
until the completion of the trip. Further quantitative analy-
sis regarding various aspects of the benefits of these savings
in the processing time is a subject of our future work.

5. RELATED WORK

Historically, the first work to address the line simplification
problem was [10], for the purpose of reducing the number
of points when displaying geographic features on the maps
[31]. Although an improved version (in running time) was
subsequently presented [16], in essence, just like the origi-
nally proposed algorithm – it yields a heuristic, not an al-
gorithm that will ensure an optimal reduction of a number
of points for a given tolerance (and vice-versa). The Com-
putational Geometry community has provided algorithms
that guarantee minimal number of points for a given ε, as
well as the minimal ε for a given number of points, both for
2D [6] and, more recently, for 3D [3] polylines. However,
these works use Euclidean distance in the respective 2D/3D
spaces to measure the distance between the points on the
original and simplified polylines. As demonstrated in [5],
this is not appropriate for the MOD settings because the
simplified trajectories’ data may yield unbounded errors4 to
the popular MOD queries (range, NN, (semi) join). Based
on the results presented in [5], in this work we used the
Eu distance function and we demonstrated that a certain
level of the simplification-quality of the MOD data can be
obtained ”on the fly”.

Modelling the motion plan of a moving object as a se-
quence of (location, time, velocity) updates was used in [26],
which introduced the concept of dynamic attributes that
need to be updated whenever the expected value of the ve-
locity of the object changes. Subsequently, [33] have investi-
gated the trade-offs between communication vs. (im)precision
for several variants of a dead-reckoning policy. Efficient al-
gorithms for processing continuous queries in MOD using
this type of motion model were investigated in [17, 18]. A
paradigm for delegating the processing of the continuous
queries to the mobile objects for the purpose of minimizing
the communication overhead was introduced in [13, 14], and
the works used a variation of the ddr dead-reckoning policy
for generating velocity updates. However, these works were
concerned with optimization problems regarding the query
processing for future queries as the now-time evolves, and
did not address the issue of the quality of the historic data
of the MOD. As a particular example, [13, 14] focus on ef-
ficient algorithms that pertain to the updates only for the
relevant subset of the objects that could impact the result of
a particular query5. On the other hand, we focused on the

4A simple intuitive observation of inadequacy is that treat-
ing the time simply as a Z-axis may justify ”traveling back-
in-time” when measuring the distance, which is unaccept-
able in MOD.
5Same type of problems were addressed in [21, 20], how-
ever, the motion model was assumed to be a stream of (lo-
cation,time) updates

correlation between the reduction of the update frequency
with a deterministic imprecision bound and the line simpli-
fication based properties of the past trajectories in MOD.

6. CONCLUSIONS AND FUTURE WORK

In this work, we analyzed the impact that an on-line spatio-
temporal data reduction using a distance-based dead reck-
oning policy has on the quality of the data representing the
past trajectories of the moving objects. We demonstrated
that, when a ddr with a threshold δ is used, the evolving-
past constructed in this manner actually generates a tra-
jectory that corresponds to a strong line simplification with
distance function Eu and threshold ε = 2δ, applied to the
set of points representing the entire trip of a given object.
Furthermore, our experiments demonstrated that the stor-
age savings thus obtained are comparable with the ones that
would be obtained when the optimal line simplification al-
gorithms [6, 3] are used, and even more comparable with the
savings obtained by the Douglas-Peuker heuristics [10, 16],
however, both of these methods are applicable on complete-
past trajectories.

Our vision for the future work includes several directions
of extending the current results: 1. Since the ddr assumes
that the motion model is the one in which the updates are
of the form (location, time, velocity), we would like to in-
vestigate an adaptive on-line data reduction for the settings
in which the updates are of the form (location,time). This
would yield storage savings for the past trajectories with
deterministic quality-of-data bounds even for the objects
that are not directly involved in the answers of any pending
continuous queries [21, 20]. Furthermore, we believe that
it would be interesting to make the on-line data reduction
process query/context aware, in the sense that different val-
ues of the threshold ε can be applied, depending on which
queries is a parctular object part of the answer-set; 2. We
believe that the on-line data reduction will also have a signif-
icant impact on the updates overhead and the maintenance
of the underlying indexing mechanism used in MOD [23,
24, 27], especially with the advantage of the deterministic
bound for the error/uncertainty [28]; 3. Another interest-
ing problem is to determine whether, and to what extent,
the knowledge of the existing infrastructure can be used to
improve the benefits of the on-line data reduction while fur-
ther decreasing the communication between the objects and
the MOD server [9]; 4. Finally, we would like to extend our
ideas to the settings in which the motion of the objects is
not represented as a (piece-wise) linear function of time [1].
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