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Abstract

Networks of sensors arise naturally in many different
fields, from industrial applications (e.g., monitoring of
environmental parameters in a chemical plant) to surveil-
lance applications (e.g., sensors that detect the presence
of intruders in a private property). The common feature
of these applications is the necessity of a monitoring
infrastructure that analyzes continuous supplies of data
streams and outputs the values that satisfy certain con-
straints.

In this paper we present an approach to process
monitoring queries in a network of sensors with pre-
diction functions. We consider sensors that communi-
cate their values according to a threshold policy and
our query processing leverages prediction functions to
compare tuples efficiently and generate answers even in
the absence of new incoming tuples. We deal with two
types of constraints: window-join constraints and value
constraints.

1. INTRODUCTION

There is a recent interest in techniques for monitoring
networks of sensors in a variety of contexts. Networks of
sensors are used in many different fields, from industrial
applications (e.g., monitoring of environmental parame-
ters in a chemical plant) to surveillance applications (e.g.,
sensors that detect the presence of intruders in a private
property).

Monitoring queries, that are processed as continuous
queries [3], arise naturally in this environment. Thus,
monitoring applications (e.g., fleet tracking applications,
monitoring of the levels of certain gases in a chemical

environment, etc.) are usually of great interest in this
context. The common feature of monitoring applications
for networks of sensors is the need of handling a con-
tinuous supply of data streams. For this purpose, many
works propose the use of a Data Stream Management
System (DSMS) [2], [7] in the monitoring computer,
which implements suitable non-blocking techniques to
process unbounded amounts of data.

A DSMS must process the types of monitoring queries
that are of interest in networks of sensors. Typical queries
in this context contain constraints about sensor values of
a certain type, that we call value constraints; e.g., “alert
when there is a carbon dioxide sensor that detects a value
exceeding a certain, dangerous, threshold”. Similarly,
constraints that compare the values measured by sensors
of are also of great interest. We refer to this last type
of constraints as window-join constraints, and they can
also require a certain temporal relationship for two values
to be joined; for example, a query retrieving pairs of
nearby sensors that measure a very different value at
approximately the same time could reveal the existence
of sensors that are malfunctioning.

We believe that in many contexts a sensor can predict
the values that it will measure in the near future. For
example, a location sensor (e.g., a GPS receiver) in a
car could predict future locations by considering the
current speed and route. Similarly, the temperature in
a room will probably evolve during the day following
some predictable patterns. Thus, each sensor value will
be associated with a prediction function in a way that
the sensor will update its value only when it differs
significatively from the predicted value. This strategy
allows a reduction of both the communication and query
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processing efforts. Due to the use of prediction functions
together with an update policy where only significant
values are transmitted, a pair of sensors could start
satisfying a required constraint even when the system
does not receive a new tuple from any of the sensors.

The rest of the paper is as follows. In Section 2 we
describe our use of prediction functions. In Section 3
we describe the types of constraints we deal with: value
constraints and window-join constraints. In Section 4 we
describe the architecture of our system. In Section 5 we
focus in window-join constraints and explain how tuples
are compared in order to generate predicted tuples as a
result. Some experiments showing the feasibility and per-
formance of our approach are presented in Section 6. We
conclude the paper with some related work in Section 7
and conclusions and future work in Section 8.

2. USE OF PREDICTION FUNCTIONS

In this section we first advocate the use of prediction
functions and then describe the structure of the data
streams released by sensors and the proposed update
policy.

2..1. Prediction Functions as a Saving Mechanism

Predictions can be reasonably used in a variety of
contexts. For example, a GPS in a car could send not
only the current location of the car but also its vector
of movement or expected trajectory [20]. Similarly, the
values measured by a temperature sensor indoors are not
expected to change in normal conditions. The level of
fuel or the distance traveled by a vehicle, the temperature
of an area, the altitude of an airplane, the intensity
detected by a light sensor during the day, the number
of persons entering a mall over a certain period, etc.
are all examples of values that can be estimated with a
prediction function. In general, predictions are specially
useful when the values are expected to change according
to predefined patterns, or when the interest is in the
detection of unexpected changes.

Thus, we propose that every value measured by a
certain sensor be attached to a prediction function that
will be used to predict future values of that sensor. In
this way, the sensor will only send significative values
to the monitoring computer instead of sending them
continually, saving a great amount of wireless commu-
nication efforts at the sensors. This is very important as
wireless communications are expensive and drain quickly
the energy of wireless devices [13]. A reduction in the
number of communicated values also leads to a decrease
in the processing overhead at the monitoring computer,
increasing the scalability of the query processing.

In different environments prediction functions could
be obtained in a variety of ways. In this paper we do not
make any assumption about the way prediction functions

are obtained [16], [8], which is out of the scope of our
work. Similarly, we do not delve into the details of how
thresholds are specified. They could be specified by the
user that issues queries; for example, if he/she is not
interested in decimal positions of a value a threshold of
one unit can be specified. Alternatively, more sophisti-
cated approaches, as adaptive thresholds [20], are also
possible.

2..2. Sensor’s Data Streams

In this section we describe first the structure of tuples
released by sensors and then we explain when a tuple is
“applicable”.

1) Structure of Tuples: Sensors measure values of a
certain type (e.g., the petrol level in a car, the tempera-
ture, etc.) continuously or at a certain sampling frequency
(e.g., 10 times per second for a GPS receiver), and we
assume they have a unique identifier within the system.
We focus on a parallel sensor network topology as in
[1]: each sensor communicates its values to a centralized
monitoring computer, which analyzes the incoming data
streams on the fly to process monitoring queries. Data
streams from sensors are logically composed of update-
tuples:

tpj=<si, typei, tj , fj(t)>

where si is the identifier of a sensor, typei is the type of
value it measures, tj is the timestamp of the update, and
fj(t) is a prediction function that, given a certain time
instant t, retrieves the expected sensor value. The value
of the sensor for the update time is given by fj(tj). As
an example, <speedCar12, speed, 10, 60 + 4.5 * t> is
a tuple sent by a speedometer in car12 moving at time
instant 10 with a speed of 60 m/s and an acceleration of
4.5 m/s2.

For simplicity, we consider that sensors estimate them-
selves their values based on their past measurements and
communicate them to a centralized computer together
with the prediction functions. However, our work does
not contradict proposals where a prediction model is
computed and assigned to sensors by a third party1, such
as [6].

2) Interval of Applicability of a Prediction Function:
In order to predict the value of a sensor at a given
time instant, we must apply the last prediction function
received from the sensor before that time instant. In other
words, the prediction function of a tuple tpk is applicable
during the time interval between the timestamp of that
tuple and that of the next tuple from the same sensor,
which we call Interval of Applicability of the Prediction
Function IAPFtpk

=[IAPFtpk
.start, IAPFtpk

.end).

1This is required, for example, when the prediction model is based
on data not available at the sensor itself, such as values measured by
other sensors in its neighborhood.
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Fig. 1. Communications of Prediction Functions

In Figure 1 we show a conceptual example where we
represent the communications of prediction functions.
The x-axis is time, and the y-axis represents the value of
a sensor. We show the changes in the prediction functions
of three sensors (s1, s2 and s3) along time. In the figure,
we consider prediction functions that are linear (i.e.,
they are of the form fj(t) = a ∗ t + b with constants
a, b ∈ �) and, consequently, each prediction function is
represented with an arrow. The projection of the arrow
over the x-axis indicates the time interval during which
that prediction function is applicable, and the projection
over the y-axis indicates how predicted values change
along that interval. The orientation of the arrow is always
from left to right, as prediction functions are not used to
estimate past values.

2..3. Threshold Update Policy with a Maximum Period
Between Updates

Sensors can follow a number of update policies [21]
in order to decide when a value is significative and
should be communicated to the monitoring computer. For
example, a sensor with a periodic policy would send the
values it measures at a certain frequency (e.g., every 10
seconds).

In this paper, we advocate a threshold policy with
a maximum period between updates. With this policy,
every sensor commits to update its value whenever: 1)
the difference with the value estimated using the last pre-
diction function exceeds a certain threshold (correction
update), or 2) the time elapsed since the last update
has exceeded a certain period T (heartbeat update).
For example, a temperature sensor could communicate
its current value whenever the difference between the
predicted value at a given time instant and its real
value exceeds one Celsius degrees with at least one
update every three minutes. The maximum update period
indicates the amount of time during which a prediction
function can be applied: outside that period, the predic-
tion function is not reliable and it can be assumed that
the sensor is unable to communicate new updates (e.g.,

it is not alive).

3. TYPES OF CONSTRAINTS

Constraints such as “sensors must measure a tem-
perature under 50F degrees” are what we call value
constraints:

VConstr(type, comp, K)
returns {(s, v, t)} such that:

(type(v) = type) ∧ (value(s) = v) ∧
(timestamp(v) = t) ∧ (v comp K)

where type is a type of sensor value, v is a sensor value of
that type, s is the sensor that measures the value, comp
is a comparator among ≤, <, >, ≥, <> and =, and
K is a constant. The sample constraint above would be
expressed with this syntax as VConstr(temperature, <,
50F).

More complex constraints, such as “pairs of gas sen-
sors must measure a similar concentration of carbon
dioxide within an interval of 10 seconds” are more
complex and we term them window-join constraints:

wconstraint(type1, type2, w, comp, K)
returns {(s1, s2, v1, v2, t1, t2)} such that:

(type(v1) = type1) ∧ (type(v2) = type2) ∧
(value(s1) = v1) ∧ (value(s2) = v2) ∧

(timestamp(s1) = t1) ∧ (timestamp(s2) = t2) ∧
(|t1-t2| ≤ w) ∧ (|v1-v2| comp K) ∧ (s1 �= s2)

where type1 and type2 are two types of sensor values,
and w is called the valid-time window and specifies a
condition between the timestamps of two sensor val-
ues. The sample constraint above would be expressed
with this syntax as wconstraint(CO2Concentration,
CO2Concentration, 10, >, 1), consider similar values
those which differ less than 1%. The relative-timestamp
condition allows comparisons between values as long as
they refer to approximately the same time instant. Valid-
time windows are useful: 1) in cases where timestamps
are uncertain such as when the clock sensors are not
precisely synchronized, and 2) in some queries such as
those retrieving pairs of buses that arrive at the same stop
within 30 minutes.

Both types of constraints can be combined. For exam-
ple, wconstraint(CO2Concentration, CO2Concentration,
10 seconds, >, 1%) ∧ VConstr(CO2Concentration, >,
12%) is satisfied by the pairs of sensors of CO2 fulfilling
the previous window-join constraint and measuring a
concentration higher than 12%.

4. ARCHITECTURE

In this section we explain the query processing archi-
tecture that we propose, shown in Figure 2.
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Fig. 2. System architecture

4..1. Tuple Evaluator

The Tuple Evaluator is the core of our architecture. As
opposed to what happens in traditional databases, queries
must be evaluated in an incremental way in order to cope
with a high arrival rate of data sent by an arbitrarily high
number of sensor devices. Thus, whenever a new tuple
is received by the Tuple Evaluator, the system verifies
how that tuple affects the active queries. For queries
that consist only of a value constraint, the new tuple
is considered alone. For queries that involve a window-
join constraint, the new tuple is compared with previous
tuples corresponding to the other types of values involved
in the window-join constraint (potential matches). This
incremental approach will detect all the answers to the
constraint, as it is event-driven instead of being based on
periodic evaluations at specific times.

For each active query, the Tuple Evaluator (explained
in more detail in Section 5) generates an output data
stream of tuples that are predicted to satisfy the required
constraints in the future. The format of these output
tuples, which we explain in the following, depends on
whether the query includes a window-join constraint or
not.

1) Predicted Tuples for Queries with a Window-Join
Constraint: For queries that includes a constraint about
pairs of sensors, the format of an output predicted tuple
is:

<tpi, tpj , VM=(I,P)>.

where tpi and tpj are the input tuples that have been
joined and V M is the validity mark of the output
predicted tuple. The validity mark indicates under which
conditions the predicted tuple applies; that is, when we
can use the prediction functions of tpi and tpj to estimate
the values of the corresponding sensors, values that will
satisfy the query. The validity mark can be seen as a
generalization of the idea of validity period presented
in [18], and it has two components:

• A validity interval I: is the time interval during
which the values of the sensors match, according
to the specified constraint and the given prediction
functions.

• A timestamp-matching boundary P : is a polygon
that delimits the admissible combinations of times
ti and tj for a match, where ti is a time instant for
the evaluation of fi(t), and tj is an evaluation time
instant for fi(t). This can be used, for example, to
find examples of values that match.

2) Predicted Tuples for Queries without a Window-
Join Constraint: In this case, the query consists only of
a value constraint. These constraints retrieve sensors that
individually satisfy certain conditions, so the format of
predicted tuples is:

<tpi, VM=I>

where the validity mark is given just by the validity
interval I . For example, a tuple <s1, type1, t1, 3*t+2>,
[5,15]> indicates that the sensor s1 satisfies the con-
straints during the interval [5,15] by considering the
prediction function 3 ∗ t + 2.

4..2. Buffer Manager

Sensors send the values they measure as data streams
that are received by the Tuple Evaluator, which commu-
nicates them to a module that we term Buffer Manager.
The Buffer Manager will decide which input tuples will
be stored (i.e., they can be needed to answer monitoring
queries) and which ones will be discarded. In this way,
when the Tuple Evaluator receives a new tuple tpi from a
sensor si of value type Si, it will ask the Buffer Manager
about tuples tpk of other types of values involved in
window-join constraints with Si in order to find possible
matches.

The tuples that should be stored in the buffers are
determined by the constraints of the active queries in
the system. As different types of values are subjected to
different query constraints, a different buffer is used for
each type of value. In the buffer of a certain type of value,
only tuples with timestamps within a given time interval
need to be stored: storing more tuples would imply both
a waste of storage space and a higher join processing
cost.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

4



In Figure 3 we show the tuples received from two
sensors s1 and s2 in a sample scenario. Tuple tp1 from
sensor s1 arrives, due to the wireless communications
involved, with a delay D. If the valid-time window that
affects the window-joins for the types of values of s1 and
s2 is w, tuple tp2 from sensor s2 should be considered
as a possible match for tp1. This implies that tuple tp2

should still be stored in the buffer for its type of value.
Therefore, the temporal width of the buffers for the types
of values of s1 and s2 is w+D. Notice that if tuples from
the same sensor cannot arrive unordered, there will not
be any tuples with timestamps greater than that of tp1

in Figure 3; however, this does not affect the previous
explanation.

w
s2

s1

new tuple

tp2

D
timestamp
older

time
current time instant

tp1

tp1

Fig. 3. Determining the Temporal Width of Buffers

Thus, the temporal width of the buffer for the type of
value S is given by:

tWidth(S) =

{
Max(w)+maxDelay if window-join(S)
maxDelay otherwise

where window-join(S) returns true iff S is involved in
a window-join constraint, Max(w) is the maximum w
in these constraints, and maxDelay is a pessimistic2

estimation of the maximum delay of input tuples. Notice
that if implicit timestamps are used, then it is not possible
to detect delayed tuples; in this case, maxDelay can be
considered to be 0.

The Buffer Manager will periodically shift the win-
dows of tuples stored in its buffers as needed according
to the previous considerations. Also, it should manage
problems derived from the lack of space to store new
tuples, by considering the relative importance of the
prediction functions of the different tuples to decide
which tuples to store. We will consider the study of this
issue as future work.

4..3. Prediction Validator

The Tuple Evaluator releases, for each query, pre-
dicted tuples about values that will satisfy the query.
The communication of a prediction function by any of
the sensors involved in a tuple could invalidate that
predicted tuple. Therefore, the predicted tuples output
by the Tuple Evaluator are only tentative and will be

2If an input tuple is delayed more than maxDelay, it could happen
that the Buffer Manager does not keep in storage other tuples that could
match the delayed tuple.

consider validated only when there is a guarantee that
they cannot be found to be wrong later.

A module called Prediction Validator can be plugged
into the system between the output of the Tuple Evaluator
and the input of a client module. This module will delay
the tuples fed into the client module when there is a
requirement that they be validated in advance3.

Prediction functions included in a predicted tuple
allow to get predicted values that satisfy the constraints
for a query during the validity interval of the predicted
tuple. Assuming that tuples are not received by the Tuple
Evaluator later than maxDelay time units since they
were released by sensors, a predicted value is considered
committed maxDelay time units after the timestamp of
the prediction function that estimated it. Thus, the Predic-
tion Validator stores the tuples received from the Tuple
Evaluator and checks them with a certain validation
period (e.g., one second) to release valid tuples that can
be inferred from them, by just modifying appropriately
the validity mark of the predicted tuple.

Example: For a predicted tuple like <s1, type1, t1,
3*t+2>, [5,20]>, maxDelay=5, and the current time
instant equals 15 time units, the tuple that would be
released in the output data stream is <s1, type1, t1,
3*t+2>, [5,10]>. If the validation period is 1 time unit,
then the next tuple would be <s1, type1, t1, 3*t+2>,
[5,11]> at time instant 16. If it is 2 time units the next
tuple would be <s1, type1, t1, 3*t+2>, [5,12]> at time
instant 17. A new tuple from sensor s1 could invalidate
the predicted tuple and stop the process at any time
instant.

4..4. Client Modules

A module client will process the tuples released by
the Prediction Validator for further processing as needed.
Our approach fits naturally with different types of client
modules, such as:

• A trigger processing module that requires a certain
action when an event is detected. For example,
there could be a trigger that fires an alarm if
a sensor detects a concentration of a dangerous
substance above a certain threshold. It is dependent
on the requirements of the application whether a
trigger should be activated only once (when the
constraints starts satisfying) or several times (while
the constraints keep satisfying). For example, an
alarm should continue ringing while the problem
is not solved.

• A sampling module that periodically transforms the
data stream into relations that are shown to a user
as snapshots at different time instants of the values
that satisfy the constraints.

3Client applications could instead be interested in queries about the
future (e.g., to prevent possible collisions between moving robots).
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4..5. Interactions between Modules

In Algorithm 1 we show how the different modules
of our architecture interact with each other. When the
Tuple Evaluator receives a new tuple tp1 of a type of
value S1, it first communicates it to the Buffer Manager,
which computes the IAPFtp1 for that tuple and updates
the IAPF of the previous tuple from the same sensor.
For each active query with constraints about type S1, the
Tuple Evaluator generates predicted tuples for the query,
according to the constraints that it contains. Then, an
invalidation tuple is generated for the previous predicted
tuple and the time interval IAPFtp1 , indicating that
previous prediction functions for tp1 are not applicable
anymore in that interval.

Algorithm 1 receiveTuple(tp1)
Require: tp1 is a new tuple received by the Tuple Evaluator.
Ensure: Generates new predicted and invalidation tuples in the

output for each query q, if needed.
bufferManager.addTuple(tp1);
IAPFtp1 ⇐ bufferManager.getIAPF (tp1);
S1 ⇐ tp1.type;
for all q ∈ queries do

if (((hasJConstr(q) and (q.wJConstr.involves(S1))) then
/* There are two classes of sensors involved */
S2 ⇐ q.wJConstr.getJoiningClass(tp1);
bufferS2 ⇐ bufferManager.getBuffer(S2);
for all tp2 ∈ bufferS2 do

IAPFtp2 ⇐ bufferS2.getIAPF (tp2);
pred ⇐ predictJ(tp1, tp2, q.getV Constrs());

end for
inv ⇐ InvalidationTuple(S1, S2, IAPFtp1);
releaseInvalidationTuple(inv, q);
if (pred �= ∅) then

releasePredictedTuples(pred, q);
end if

else
/* Now window-join. */
pred ⇐ predictV (tp1, q.getV Constr());
inv ⇐ createInvalidationTp(tp1.s, IAPFtp1);
releaseInvalidationTuple(inv, q);
releasePredictedTuples(pred, q);

end if
end for

The tuples generated by the Tuple Evaluator are re-
ceived by the Prediction Validator, as show in Algo-
rithm 2. If the tuple received is an invalidation tuple,
it will update the validity marks of any predicted tuple
for that query and the involved sensor/s in order not to
include the invalidation interval. If it is a predicted tuple,
it will store it in the table of tentative predictions and
release them as required (see Section 4.3). Notice that the
Tuple Evaluator could release just an invalidation tuple
or also predicted tuples.

5. PROCESSING INCOMING TUPLES

In this section we explain how the Tuple Evaluator
deals with new tuples received from the sensors. The

Algorithm 2 processPredictedTuple(tp, q)
Require: tp a tuple released by the Tuple Evaluator regarding

the query q.
Ensure: updates conveniently the table of Tentative Predic-

tions tt for query q.
if (isInvalidationTp(tp) then

tt.q.trimPredicted(tp.s1, tp.s2, tp.I);
else

tt.q.addPredicted(tp);
end if

comparison of tuples is performed in two stages: a filter
step and an evaluation step.

5..1. Step 1: Filter Step

We will first filter out possible matches based on the
idea that two predicted values cannot match if they are
not comparable due to the difference in their timestamps.
Notice first that two predicted values from two sensors
can be compared even if they do not refer to the same
time instant, as long as their timestamps are within valid-
time w from each other. In Figure 4 we show a graphical
example with two prediction functions, fk(t) and fl(t),
and a window-join constraint with a ≤ comparator. Al-
though values v1(t1), corresponding to fk(t), and v2(t2),
corresponding to fl(t), refer to a different time instant
(t1 and t2 respectively), they match. This is due to the
fact that they are within the same valid-time window w
and the difference between their values do not exceed K.
However, if we compare values with the same timestamp
t1 or t2 they do not match, as |v1(t1)−v2(t1)| > K and
also |v1(t2) − v2(t2)| > K.

|v1(t1)−v2(t2)| <= valDiff

|t1−t2| <=w

timet2

fl(t)
v2(t2)

t1

v2(t1)

v1(t1)

valDiff

fk(t)
value

v1(t2)

Fig. 4. Values for different time instants can match

The fact that two predicted values can be comparable
even if they have different timestamps implies that two
prediction functions can be comparable even if their
IAPFs are disjoint. However, we still can dismiss a
potential match by comparing the IAPFs of two tuples
tpk and tpl to match. If after extending one of the
intervals by w on its right and left sides they do not
intersect, the tuples do not match:

match(tpk,tpl)= false if
I’ ∩ IAPFtpl

= ∅
where I’=[IAPFtpk

.start - w, IAPFtpk
.end + w].
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5..2. Step 2: Evaluation Step

For those pairs of tuples that are not filtered out
in the previous step, we must evaluate the window-
join constraint over them to determine when they will
match (if ever). As a result of the comparison of two
tuples, predicted tuples that will satisfy the constraint
are generated.

In this step we limit our study to linear prediction func-
tions, so our problem translates thus to comparing predic-
tion functions by solving a system of linear inequalities,
which can be performed efficiently. We would like to
stress that many well-known estimation techniques such
as the linear extrapolation, double exponential smoothing
or the Kalman filter are linear models, and that non-linear
prediction functions can be approximated in many cases
by linear functions using a variety of techniques [14].
Also, for clarity of exposition we will focus only on a
window-join constraint with a ≤ comparator.

First we change the name of the temporal variables t in
the prediction functions to capture the fact that they can
refer to different time instants tk and tl (otherwise, we
would be implicitly requesting that tk = tl, i.e., that both
functions must be evaluated at the same time instant):

fk(tk) = a ∗ tk + b
fl(tl) = c ∗ tl + d

The corresponding system of linear inequalities for the
window-join constraint becomes:

a ∗ tk − c ∗ tl + b − d ≤ K (1)
c ∗ tl − a ∗ tk + d − b ≤ K (2)
tk − tl ≤ w (3)
tl − tk ≤ w (4)
tk ≥ IAPFtpk

.start (5)
tk ≤ MIN(IAPFtpk

.end, IAPFtpk
.start + T ) (6)

tl ≥ IAPFtpl
.start (7)

tl ≤ MIN(IAPFtpl
.end, IAPFtpl

.start + T ) (8)

All of these inequalities must be satisfied at the
same time. Inequalities (1) and (2) derive from the
requirement |fk(tk) − fl(tl)| ≤ K and the definition of
absolute value. Inequalities (3) and (4) result from the
condition |tk − tl| ≤ w of the window join constraint and
the definition of absolute value. Finally, (5), (6), (7) and
(8) are conditions about the IAPFs of tuples tpk and tpl

(a prediction function cannot be applied at a time instant
out of its IAPF or after the maximum update period).

The previous system can be easily solved graphically,
as only two variables are involved. As a result, we
obtain the timestamp-matching boundary and the validity
interval (see Section 4.1.1). The timestamp-matching
boundary is the feasible region obtained by graphical
resolution (see Figure 5 for an example). The validity
interval is [MIN(tk.start, tl.start), MAX(tk.end, tl.end)],
where [tk.start, tk.end] and [tl.start, tl.end] are the ranges
of admissible values for tk and tl respectively.

timestamp

8

WINDOW−JOIN CONSTRAINT

boundary

1210

validity interval=[0,12]

4

−2

−6

matching

−4

Prediction function 2: f(t)=2t−3

K=1
With comparator <=

6

w=4

Prediction function 1: f(t)=t

tk

(−6,−2)

(12,8)

(10,6)

tl

Fig. 5. Timestamp-matching boundary

While we have focused on the ≤ comparator, our
strategy applies similarly for the rest of comparators
by considering the linear constraints that derive from
them. For example, with the ≥ comparator the constraint
about the values in a window-join constraint |fk(tk) −
fl(tl)| ≥ K transforms into two alternative constraints:
fk(tk) − fl(tl) ≥ K or fl(tl) − fk(tk) ≥ K. The
original constraint satisfies if and only if any of these
constraints do. Therefore, we have to solve two systems
of linear inequalities instead of one, and there could be
two validity intervals for the resulting predicted tuple4.
For the “strict” comparators < and >, edges of the
timestamp-matching boundary that are defined by strict
linear constraints must be appropriately flagged, as they
contain points that are not valid combinations of tk and
tl. The comparator = is the conjunction of >= and <=,
and �= is the disjunction of < and >.

Finally, we would like to mention that values predicted
using the prediction functions of tuples are subject to
a certain uncertainty, given by the threshold policy
update (see Section 2.3). This implies that the real value
associated to a certain predicted value will be within a
segment of length twice the uncertainty and centered in
the predicted value. Adapting the proposal to process
queries with must and may semantics [21] is omitted here
due to the lack of space. This semantic differentiation can
be of great interest in sensor networks. For example, we
may want to know if the temperature increases above a
certain level with logging purposes (must) or detect the
possibility of values of a dangerous chemical substance
above a certain level (may).

4For simplicity, our prototype generates two predicted tuples, each
one with a single validity interval.
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6. EXPERIMENTS

In this section we show some preliminary results ob-
tained using our prototype, in order to test the feasibility
and performance of our approach.

6..1. Experimental Settings

We consider a scenario where the sensors are location
devices attached to objects moving at 60 mph (about 26.8
m/s). These objects update their data to a centralized
computer by considering a five-meter threshold (unless
specified otherwise) and a three-minute maximum period
between updates from each moving object. We run mon-
itoring tests for three minutes and sample the output data
stream every second. The query evaluated retrieves pairs
of objects within 80 meters of each other. To make such
query suitable to the window-join constraints described
in this paper, we consider the Manhattan distance instead
of the euclidean distance.

The experiments were performed on an Intel Pentium
4, CPU 1.70GHz, and RAM 256 Mb, with Red Hat Linux
7.3 (kernel 2.4.18). For simulation purposes, we have
defined a set of trajectories that are processed using the
IBM Location Transponder [17], which assigns threads
as needed to meet the deadlines of each location update.
We defined a set of nine non-straight trajectories to assign
to the moving objects; for experiments with a higher
number of objects, we offset the defined trajectories both
vertically and horizontally by amounts of 100 meters
as needed, such that there are no two objects with
the same trajectory. Lastly, we would like to mention
that our current prototype does not use any specialized
solver for linear equations; therefore, the processing time
per comparison could possibly be reduced by using an
optimized implementation.

6..2. Scalability of the Number of Moving Objects

In Figure 6 we show the impact of the total number
of moving objects in the total processing time of all the
input tuples both in the case of using or not an indexing
mechanism during the test. In our prototype, we use an
R-tree5 with fill factor 0.4 and a capacity of five branches
per node. We have decided to index only the x and y
coordinates of the moving objects (we leave aside the
time), which is the best choice in our scenario, according
to the results that we will present in Section 6.3.

The contribution to the processing time due to main-
tenance tasks of the R-tree (insertions and removals
into/from the index) is also shown in the figure. We can
see how the use of an index structure clearly outperforms
a strategy where no index is used, and therefore we
will use an index in the rest of our experiments. Only
for a small number of moving objects (under 30) the

5Specifically, we use the the Java library 0.44.2b developed by
Marios Hadjieleftheriou (http://www.cs.ucr.edu/ marioh/spatialindex/).

overhead of maintaining the R-tree does not pay off. A
total processing time above three minutes is indicated by
values that do not fit in the figure6.

Fig. 6. Effect of the number of objects in the total processing time

As we can see in the figure, the system exhibits
an acceptable scalability when the number of moving
objects increases, although unfortunately the increase in
the processing time is not linear. Notice, however, that we
are considering a worst-case situation in the sense that
all the input tuples are of the type of value in which the
query is interested (horizontal or vertical location). This
implies that any new tuple received can potentially match
with any other tuple already present in the buffer. The use
of the R-tree however helps us to reduce the great number
of comparisons needed. Also, as tested in Section 6.4, the
threshold of the update policy has a significant impact on
the processing overload.

6..3. Impact of the Dimensionality of the R-tree

We show in Figure 7 the impact of the dimensionality
of the index structure used for the experiments. We
consider a choice between a two dimensional index
structure (indexing the x and y coordinates) and a three
dimensional one (indexing the x and y coordinates, and
also the time). The figure shows that a two dimensional
index achieves better results in our test scenario, and
therefore we have used this index structure in our exper-
iments.

Fig. 7. Impact of the R-tree dimensionality

6..4. Impact of the Threshold of the Update Policy

In Figure 8 we show the impact of the threshold
considered by the update policy. Thus, we can see how

6For these cases, there was not enough time to process all the input
tuples during the monitoring interval!
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increasing the threshold decreases the total processing
time of the input tuples. This is because a smaller number
of updates are sent by the moving objects, and this in
turn reduces the number of comparisons of prediction
functions needed to determine if two tuples match. In
other words, by increasing the threshold of the update
policy we trade processing cost for precision. Notice also
that the reduction in the processing time is not linear
with the increase in the update threshold; for example,
it makes a big difference if the moving objects allow
a location error of 545 meters instead of just 45, but
between 2045 and 2545 the number of updates is similar.

Fig. 8. Impact of the threshold of the update policy

6..5. Impact of the Scenario Size

In Figure 9 we show the impact of the scenario size
when there are 180 moving objects in the scenario. We
vary the size of the scenario by modifying the offset
among the trajectories of moving objects; for example,
the size of the scenario is 75 squared kilometers when
the offsets among trajectories is 30 meters, and it is
240 squared kilometers for an offset of 70 meters.
The figure shows how an increase in the scenario size
(with the given distribution of trajectories) leads to a
smaller processing time. This is because the R-tree filters
out a greater number of tuples as possible matching
candidates. Similar to what happened in the experiment
of Section 6.4, however, the decrease is not linear.

7. RELATED WORK

It has been proposed in the literature to add some
semantic information to data streams in order to be able
to process certain queries. Thus, a punctuation [19] is a
pattern that describes a substream in a data stream (e.g.,
“values smaller than 5”), and it allows the evaluation
of blocking and unbounded stateful operators (e.g., join
and sort) over data streams. On the contrary, we use

Fig. 9. Impact of the scenario size

prediction functions for performance purposes and focus
on window-joins.

There are a wide variety of works on data stream
processing (see, for example [2]). In the following, we
will just describe some works which, as ours, propose to
use predictions in the context of data streams.

The most relevant work is [15], as they also propose
to use predictors to reduce the communication costs in
a sensor network. They study several prediction tech-
niques, and all of them are based on linear functions. A
similar idea is proposed in [12], where they specifically
choose a Kalman filter among the linear estimation
methods. However, these works do not focus on query
processing issues. By considering linear prediction func-
tions, we allow an efficient join processing of values
within a certain time window.

In [6] their basic assumption is that in many contexts
the readings of nearby sensors are correlated, and pro-
pose to analyze the spatio-temporal correlation to com-
pute prediction models in networks with static sensors.
However, they do not study how to process efficiently the
data received from sensors to answer different types of
queries. Therefore, their work is complementary to ours:
we could use their ideas to obtain prediction functions in
suitable contexts, and they could use our work to process
queries over the data obtained by using their prediction
models. A similar idea to [6] is presented in [9] but they
focus on groups of sensors. Finally, [5] also exploits the
spatio-temporal correlations among readings of sensors:
some sensors do not communicate their values but they
are estimated from those of the rest of the sensors by
using a linear model.

Another complementary work is [11], where Kalman
filters are used to adjust dynamically the sampling rate of
sensors: sensors for which the prediction error is higher
will sample at a higher rate. The main disadvantage of
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this approach is that it cannot detect unexpected events
between samplings.

In [10] they use time window constraints to limit sets
of tuples of different sensors that can be matched for
a query and propose a mechanism to process multi-
way joins. However, they focus on a different problem
(tracking the motion of a moving object) and their
technique requires the specification of the names of the
individual sensors involved in the join, so they must be
known in advance.

Finally, some works such as [1], [4] deal with the
event/outlier detection problem. As opposed to these
works, we propose an architecture for the monitoring of
different types of queries that can be useful for a variety
of applications. Thus, the output of our system could be
used, for example, for offline data mining with the goal
of detecting common patterns.

8. CONCLUSIONS AND FUTURE WORK

In this paper we have described a framework for
the efficient processing of data streams with prediction
functions in a network of moving sensors. The use of pre-
diction functions allows us to minimize communications
from the sensors, which is an important concern due to
energy and bandwidth limitations, and it also allows an
efficient query processing.

While the use of predictions has been already proposed
in the literature of data streams, and some works such
as [15], [12] compare different prediction techniques,
as far as we know no other paper focuses on query
processing aspects as we do. Our incremental processing
approach detects all the answers, adapts to different types
of clients, and allows the processing of predictive queries.
We consider two types of interesting constraints, and
we focus mainly in window-join constraints that, up to
our knowledge, has not been considered so far in other
works. We have implemented our architecture and show
some experimental results showing the performance and
scalability of our approach.

As future work, we plan to conduct a more extensive
experimentation and analyze the precision/threshold re-
lation and the update cost in more depth. Adapting the
Buffer Manager to deal with memory space constraints is
an open issue. Another particularly interesting area is to
analyze how to extend our ideas to a distributed context
where sensors communicate their values to different
computers.
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