Querying the Uncertain Position of Moving Objects

A. Prasad Sistla* Ouri Wolfsonf Sam Chamberlaint Son Dao?

Abstract

In this paper we propose a data model for representing moving objects with uncertain positions
in database systems. It is called the Mowving Objects Spatio-Temporal (MOST) data model. We also
propose Future Temporal Logic (FTL) as the query language for the MOST model, and devise an
algorithm for processing FTL queries in MOST.

1 Introduction

Existing database management systems (DBMS’s) are not well equipped to handle continuously changing
data, such as the position of moving objects. The reason for this is that in databases, data is assumed to be
constant unless it is explicitly modified. For example, if the salary field is 30K, then this salary is assumed
to hold (i.e. 30K is returned in response to queries) until explicitly updated. Thus, in order to represent
moving objects (e.g. cars) in a database, and answer queries about their position (e.g., How far is the car
with license plate RWWS860 from the nearest hospital?) the car’s position has to be continuously updated.
This is unsatisfactory since either the position is updated very frequently (which would impose a serious
performance and wireless-bandwidth overhead), or, the answer to queries is outdated. Furthermore, it is
possible that due to disconnection, an object cannot continuously update its position.

In this paper we propose to solve this problem by representing the position as a function of time; it
changes as time passes, even without an explicit update. So, for example, the position of a car is given as
a function of its motion vector (e.g., north, at 60 miles/hour). In other words, we consider a higher level of
data abstraction, where an object’s motion vector (rather than its position) is represented as an attribute
of the object. Obviously the motion vector of an object can change (thus it can be updated), but in most
cases it does so less frequently than the position of the object.

We propose a data model called Moving Objects Spatio-Temporal (or MOST for short) for databases
with dynamic attributes, i.e. attributes that change continuously as a function of time, without being
explicitly updated. In other words, the answer to a query depends not only on the database contents,
but also on the time at which the query is entered. Our model also allows for uncertainty in the values
of dynamic attributes. Furthermore, we explain how to incorporate dynamic attributes in existing data
models and what capabilities need to be added to existing query processing systems to deal with dynamic
attributes.

Clearly, our proposed model enables queries that refer to future values of dynamic attributes, namely
future queries. For example, consider an air-traffic control application, and suppose that each object in
the database represents an aircraft and its position. Then the query Q = “retrieve all the airplanes that
will come within 30 miles of the airport in the next 10 minutes” can be answered in our model. In [12] we
introduced a temporal query language called Future Temporal Logic (FTL). The language is more natural
and intuitive to use in formulating future queries such as Q. Unfortunately, due to the difference in data
models, the algorithm developed in [12] for processing FTL queries does not work for MOST databases.
Therefore, in this paper we develop an algorithm for processing an important subclass of FTL queries for
MOST databases.

*Department of Electrical Engineering and Computer Science, University of Illinois, Chicago, IL 60607

tDepartment of Electrical Engineering and Computer Science, University of Illinois, Chicago, IL 60607 CESDIS, NASA
Goddard Space Flight Center, Code 930.5, Greenbelt, MD 20771

fArmy Research Laboratory, Aberdeen Proving Ground, MD

§Hughes Research Laboratories, Information Sciences Laboratory, Malibu, CA

The answer to future queries is usually tentative in the following sense. Suppose that the answer to the
above query Q contains airplane a. It is possible that after the answer is presented to the user, the motion
vector of a changes in a way that steers a away from the airport, and the database is updated to reflect
this change. Thus a does not come within 30 miles of the airport in the next 10 minutes. Therefore, in
this sense the answer to future queries is tentative, i.e. it should be regarded as correct according what is
currently known about the real world, but this knowledge (e.g. the motion vector) can change.

Continuous queries is another topic that requires new consideration in our model. For example, sup-
pose that there is a relation MOTELS (that resides, for example, in a satellite) giving for each motel
its geographic-coordinates, room-price, and availability. Consider a moving car issuing a query such as
“Display motels (with availability and cost) within a radius of 5 miles”, and suppose that the query is
continuous, i.e., the car requests the answer to the query to be continuously updated. Observe that the
answer changes with the car movement. When and how often should the query be reevaluated? Our query
processing algorithm facilitates a single evaluation of the query; reevaluation has to occur only if the motion
vector of the car changes.

We provide two different kinds of semantics called may and must semantics respectively. Because
of possible uncertainty in the values of dynamic attributes, these two different semantics may produce
different results. For example, consider the query “Retrieve all air-planes with in 5 miles of airplane A”.
Under the “may” semantics, the answer is the set of all airplanes that are possibly with in 5 miles of A.
Under the “must” semantics, this will be the set of all airplanes which are definitely with in 5 miles of A.
These two values coincide if there is no uncertainty in the position of A.

We assume that there is a natural, user-friendly way of entering into the database the current position
and motion vector of objects. For example, a point on a screen may represent the car’s current position!,
and the driver may draw around it, on the touch-sensitive screen, a circle with a radius of 5 miles; then
s/he may name the circle C and indicate that C' moves as a rigid body having the motion vector of the
car. This way the driver specifies a circle and its motion vector, and the car’s computer can create a data
representation of the moving object. The computer can automatically update the motion vector of C when
it senses a changes in speed or direction. In other applications, such as air-traffic-control, there may be
other means of entering objects and their motion vector.

Generally, a query in our data model involves spatial objects (e.g. points, lines, regions, polygons) and
their motion vector. Some examples of queries are: “Retrieve the objects that will intersect the polygon P
within 3 minutes”, or, “Retrieve the objects that will intersect P within 3 minutes, and have the attribute
PRICE < 1007, or, “Retrieve the objects that will intersect P within 3 minutes, and stay in P for 1 minute”,
or “Retrieve the objects that will intersect P within 3 minutes, stay in the polygon for 1 minute, and 5
minutes later enter another polygon Q”.

We consider the problem of evaluating “may” queries for the case of moving objects. We show that,
in general, this evaluation problem is computationally hard for the case when there is uncertainity and
the objects are moving freely in two dimensional space. For the case when the objects are moving on well
defined routes and when there is uncertainty in their speeds, we show that the evaluation problem of “may”
queries, that use restricted FTL formulas, is efficiently solvable; we do this by reducing this problem to the
evaluation problem for the deterministic case, i.e. when there is no certainty. Finally, we give an efficient
algorithm for evaluating queries in the deterministic case (for relational databases, this method translates
the FTL formula in to a sequence of SQL queries).

In summary, in this paper we introduce the MOST data model whose main contributions are as follows.

e A new type of attributes called dynamic attributes. The principles for incorporating dynamic at-
tributes on top of existing DBMS’s are outlined.

e Adaptation of FTL as a query language in MOST. Two different semantics for queries, called “may”
and “must” semantics, are provided.

e An efficient algorithm is devised for processing queries specified in an important subclass of FTL
when all dynamic variables are deterministic, i.e. when there is no uncertainty in their values at any
instant of time.

e Efficient algorithm for processing an important subclass of “may” queries when objects are traveling
on well defined routes and when there is uncertainty in their speeds. This algorithm is obtained by
reducing it to the deterministic case.

this position may be supplied, for example, by a Geographic Positioning System (GPS) on board the car.

e We show how the proposed algorithms can be implemented on top of an existing DBMS.

The rest of this paper is organized as follows. In section 2 we introduce the MOST data model and
discuss the types of queries it supports in terms of database histories. In section 3 we define the FTL query
language, i.e. its syntax and semantics in the context of MOST; we also demonstrate the language using
examples, and we introduce an algorithm for processing FTL queries. In section 4 we discuss a method
of indexing dynamic attributes. In section 5 we discuss several issues related to implementation of the
MOST data model, including: MOST on top of existing DBMS'’s, queries issued by moving objects, and
distributed query processing. In section 6 we compare our work to relevant literature, and in section 7 we
discuss future work.

2 The MOST data model

The traditional database model is as follows. A database is a set of object-classes. A special database
object called time gives the current time at every instant; its domain is the set of natural numbers, and its
value increases by one in each clock tick. An object-class is a set of attributes. For example, MOTELS is
an object class with attributes Name, Location, Number-of-rooms, Price-per-room, etc.

Some object-classes are designated as spatial. A spatial object class has attribute POSITION denoting
the position of the object. Depending on the coordinate system one might be using, the POSITION
attribute may have sub-attributes POSITION.X, POSITION.Y and POSITION.Z denoting the x-,y- and
z-coordinates of the object. The spatial object classes have a set of spatial methods associated with
them. Each such method takes spatial objects as arguments. Intuitively, these methods represent spatial
relationships among the objects at a certain point in time, and they return true or false, indicating whether
or not the relationship is satisfied at the time. For example, INSIDE(0,P) and OUTSIDE(o,P) are spatial
relations. Each one of them takes as arguments a point-object o and a polygon-object P in a database
state; and it indicates whether or not o is inside (outside) the polygon P in that state. Another example
of a spatial relation is WITHIN-A-SPHERE(r, 01 , ... ,0r). Its first argument is a real number r, and
its remaining arguments are point-objects in the database. WITHIN-A-SPHERE indicates whether or not
the point-objects can be enclosed within a sphere of radius r.

There may also be methods that return an integer value. For example, the method DIST (01, 02) takes
as arguments two point-objects and returns the distance between the point-objects.

To model moving objects, in subsection 2.1 we introduce the notion of a dynamic attribute, and in
subsection 2.2 we relate it to the concept of a database history. In subsection 2.3 we discuss three different
types of queries that arise in this model.

2.1 Dynamic attributes

Each attribute of an object-class is either static or dynamic. Intuitively, a static attribute of an object is an
attribute in the traditional sense, i.e. it changes only when ann explicit update of the database occurs; in
contrast, a dynamic attribute changes over time according to some given function, even if it is not explicitly
updated. For example, consider an object starting from the origin and moving along the z axis in two
dimensional space at 50 to 60 miles per unit time. Then its position at any point in time is given by its =
and y coordinates, where the value of its y-coordinate is a static attribute and has valuezero, and the value
of its z-coordinate is a dynamic attribute that changes with time. Its z-coordinate has value 1 some time in
the time interval between 61—0 and 51—0 units of time, has value 2 some time in the interval between 62—0 and %7
and so on (equivalently, after ¢ units of time, the z-coordinate value of the object’s position is somewhere
between 50¢ and 60t). We represent the values of a dynamic attribute at various times by a sequence of
value-time pairs of the form (uy,1), ..., (Ui, t;), (Wig1, tit1); - (Un, tn) wWhere t1 < to < ... < t; < tigq....
Such a sequence indicates that, for each i such that 0 < ¢ < n, the attribute has value u; during the right
open interval [¢;,¢;+1), and has value u,, at time ¢,,. Usually, 1, ..., ¢, denote the time instances when the
attribute value changes implicitly. Note that, here we are assuming that the attribute takes discrete values.

Formally, a dynamic attribute A is represented by three sub-attributes,
A.initialvalue, A.updatetime, and A.function(denoted as A.f). Here A.f is a multi-valued function
which takes as argument a sequence of value-time pairs and returns a set of possible value-time pairs of
the dynamic attribute. Intuitively, the returned value-time pairs denote the different ways in which the
input sequence can be extended to denote values of the variable in future. At time A.updatetime the value
of A is given by A.initialvalue and its value until the next update is defined inductively as follows. Let

v = (u1,t1), ..., (un,t,) be a sequence of value-time pairs denoting the values of A up to time ¢,, where
uy = A.initialvalue and t; = A.updatetime, and let (upy1,t,41) be any element in the set C returned by
A.f on input v. Then, the sequence (u1,%1)...., (Un, tn), (Unt1,tnt1) denotes a possible sequence of values
of A up to time #,4;. Note that by extending v with different elements from C' we get different extensions;
these different extensions may give different values to A at the same time denoting the uncertainty in its
value.

For any t > A.updatetime, we define the set of possible values of A at time ¢t as follows. Let
(u1,t1), oy (Unytn), (Upt1,tne1) be a sequence of value-time pairs generated inductively as defined above
such that t,, <t < t,41. Then u,, is a possible value of A at time t. The set of all possible values of A
at time t is defined by considering all possible such sequences. Thus, we see that the possible values at a
future time is defined inductively as function of its values at previous times. The need for such a definition
will be be clear when we define database histories in the next subsection. Also, it is to be noted that the
uncertainty in the possible value of a dynamic attribute is indicated by the fact that A.f returns a set of
values.

As an example, let 0.POSITION.X be the dynamic variable denoting the x-coordinate of an object o
moving in the direction of the x-axis at a speed ranging between the values I and h. Let u be a sequence
of value-time pairs ending with (u,,t,). Then the function 0.POSITION.X.f, on input u, will output
the set of values {(u,, + 1,¢, +€) : + < e < 7} denoting that the z-coordinate increases by 1 at any time
between % and % time units after t,,.

A dynamic variable A is called deterministic if the set of values returned by A.f is a singleton set. An
explicit update of a dynamic attribute may change any of its sub-attributes, except for A.updatetime.

There are two possible interpretations of A.updatetime, corresponding to valid-time and transaction-
time (see [14]). In the first interpretation, it is the time at which the update occurred in the real world
system being modeled, e.g. the time at which the vehicle changed its motion vector. In this case, along
with the update, the sensor has to send to the database A.updatetime. In the second interpretation,
A.updatetime, is simply the time-stamp when the update was committed by the DBMS. In this paper we
assume that the database is updated instantaneously, i.e. the valid-time and transaction-time are equal.

When a dynamic attribute is queried, the answer returned by the DBMS gives the range of possible
values of the attribute at the time the query is entered. In this sense, our model is different than existing
database systems, since, unless an attribute has been explicitly updated, a DBMS returns the same value
for the attribute, independently of the time at which the query is posed. So, for example, in our model the
answer to the query: “retrieve the possible current z-positions of object o” depends on the value of the
dynamic attribute 0. POSITION.X at the time at which the query is posed. In other words, the answer
may be different for time-points #; and ts, even though the database has not been explicitly updated
between these two time-points.

In this paper we are concerned with dynamic attributes that represent spatial coordinates, but the model
can be used for other hybrid systems, in which dynamic attributes represent, for example, temperature, or
fuel consumption.

2.2 Database histories

In existing database systems, queries refer to the current database state, i.e. the state existing at the time
the query is entered. For example, the query can request the current price of a stock, or the current position
of an object, but not future ones. Consequently, existing query languages are nontemporal, i.e. limited to
accessing a single (i.e. the current) database state. In our model, the database implicitly represents future
states of the system being modeled (e.g. future positions of moving objects), therefore we can envision
queries pertaining to the future, rather than the current state of the system being modeled. For example,
a moving car may request all the motels that it may reach (i.e. come within 500 yards of) in the next 20
minutes. To interpret this type of queries, i.e. queries referring to dynamic attributes, we need the notion
of a database history.

We assume that there is a special variable called time_stamp. A database state is a mapping that
associates a set of objects of the appropriate type to each object class and a time value to the time_stamp
variable. The value of the time_stamp variable in a database state gives the time when that database state
was created, i.e. the update that created the database state. In any database state, the value of a dynamic
attribute A is given by the values of its three sub-attributes A.initialvalue, A.updatetime and A.f. For
any object o, we let 0.A denote the attribute A of o; if A has a sub-attribute B then we let 0.A.B denote
the value of the sub-attribute. We denote the value of the attribute A of an object o in a state s by s(0.A).

Let s be a database state, and ¢ be any time value greater than or equal to s(time_stamp). A possible
database state s’ corresponding to s at time ¢ is a mapping that associates a set of objects of the appropriate
type to each object class and the value ¢ with the variable time_stamp satisfying the following properties:
for each object class C the set of objects assigned by s’ to C is same as the set of objects assigned by s;
for each object o present in s the value of an attribute A of o in s’ is defined as follows; if A is a static
attribute then s'(0.A) = s(0.A); if A is a dynamic attribute then s’ treats A as atomic and assigns it a
value s'(0.A) which belongs to the set of possible values of A as defined in the previous subsection. For
a database state s, and any time ¢ > s(time_stamp), there can be more than one possible database state
corresponding to s at time t. However, if all the dynamic attributes are deterministic, i.e. no uncertainty,
then there can only be one possible database state corresponding to s at time .

A trace is a finite sequence s, .., 84, ..., s, of database states such that for every i > 0, s;(tirme_stamp) >
s;_1(time_stamp), i.e. the values of the time_stamp are strictly increasing. For any ¢ > 0, we say that the
attribute A of object o is updated in the state s; if 0 is present in both s; and s; 1 and s;_1(0.4) # s;(0.4).
We say that object o is created in state s; if o is present in s; but not in s; 1. If 0 is created in s; then for
every dynamic attribute A of o, s;(0.A.updatetime) = s;(time_stamnp). Similarly, if a dynamic attribute
A of an object o is updated in state s;, then s;(0.A.updatetime) = s;(time_stamp).

Let 0 = (so,...,Si,---Sn) be a trace. A possible database history h (briefly, a database history) corre-
sponding to o is an infinite sequence vy, v1,...,v;,... of possible database states such that the following
properties are satisfied: (i) for all j > 0, v;(time_stamp) > v;_1(time_stamp), and v;(time_stamp)
increases unboundedly with j; (ii) for every ¢ such that 0 < i < n, there exists an k such that
si(time_stamp) = vy (time_stamp); (iii) for each j > 0, v; is a possible database state corresponding
to s; where ¢ is the maximum integer such that 0 <14 < n and s;(time_stamp) < v;(time_stamp).

Note that, in a history, the value of time_stamp is monotonically increasing; usually, we assume that
these time values denote the instances when the state changes either due to an explicit update, or due to
implicit change in the value of a dynamic attribute.

There can be many possible database histories corresponding to a trace. However, if all the dynamic
variables are deterministic then there is only one history corresponding to a trace.

Consider the example of an object 0 moving in the x-direction with a speed ranging between 50 and
60 miles per unit time starting with the x-coordinate equals 0 at time 0. Assume that its x-coordinate is
represented by the dynamic attribute 0.POSITION.X. We assume that the x and y coordinates are integer
values. The database trace corresponding to this example has only one element consisting of the initial state.
Now consider any sequence of possible database states vg,v1,...,v;,.... Then vg(0.POSITION.X) = 0,
and for any i > 0, v;(0.POSITION.X) = i and v;_ (time_stamp) + € where € is any value between &
and %. Here the lowest value and highest values of € correspond to the cases when the object moves at
maximum and minimum speeds respectively.

Consider a database trace denoting the various updates on a given database up to the current time .
Let h be a database history corresponding to this trace. The finite sequence consisting of possible database
states in h with a lower time-stamp than ¢ is called the past database-history, and the inifinite sequence
consisting of all possible states in h with a time-stamp higher than the current time ¢ is called the future
database-history. Each state in the future history is identical to the state at time ¢, except possibly for the
values of the dynamic attributes.

We would like to emphasize at this point that the database history is an abstract concept, introduced
solely for providing formal semantics to our temporal query language, FTL. We do not maintain store the
database history any where.

2.3 Object Positions

As indicated earlier, we assume that we have a database denoting information about spatial and other
objects. The class of spatial objects has a subclass of moving objects. There may be other subclasses of
spatial objects such as polygons etc. All the moving objects are assumed to be point objects, and they
have a dynamic attribute called POSITION. If a moving object is moving in 2-dimensional space then
we assume that it has sub-attributes POSITION.X and POSITION.Y each of which itself is a dynamic
attribute (similarly, objects moving in 3-dimensional space will have three sub-attributes). On the other
hand, objects may be moving on well defined routes (such as high ways etc.) and in that case, the position
of the object is given by its distance when measured from a fixed point on the route in a particular direction;
this distance will be considered as a dynamic attribute.

Although we have used a general multi-valued function to represent the values of a dynamic attribute,

one can use one of the following two schemes for representing positions of moving objects. In the first
scheme, for an object moving on a well defined route, we specify the motion of the object by two numbers
denoting the upper and lower bounds on the speed; for an object moving freely in the two dimensional
space, its motion is specified by giving the speed bounds in the X and Y directions. In the second scheme,
for an object moving on a route, we specify its distance, from the initial position, by two functions of time
that give upper and lower bounds on the distance at any future time; for an object moving freely in two
dimensional space, we use pairs of functions for each of the XY directions.

2.4 Three types of MOST queries

A query is a function which takes as input a database trace and a time value, and outputs a set of values.
In our query language, the user can use temporal operators and can refer to the current as well as future
possible database states. We define the semantics of a query by referring to the possible histories of the
database. We define two different kinds of semantics of a query, called may and must semantics. In our
model, we distinguish between three types of queries; instantaneous, continuous and persistent. The same
query may be entered as instantaneous, continuous and persistent, producing different results in each case.
These types differ depending on the histories on which the query is evaluated, and on the time when they
are evaluated (in contrast, in traditional databases the situation is simpler). For each of these types of
queries, we may use either of the two semantics. Which of the semantics to be used can be explicitly
specified by the user or the query processor may retrieve answers under the both the semantics and output
both the answers. An instantaneous query is a function of the set of current possible database states, and
a continuous query is an instantaneous query evaluated continuously at each instance in the future.

Formally, the value of an instantaneous query at time ¢ is defined using the set of possible histories
starting at ¢, i.e. the time when the query is entered. As indicated earlier, the value depends upon the kind
of semantics used, may or must semantics. ¢ is usually the time when the query is entered. For example,
the query Q = “Display the motels within 5 miles of all the current possible positions of vehicle z”, when
considered as an instantaneous query returns a set of motels, presented to the user immediately after the
query is evaluated. Since there may be an uncertainty in the current position, the set of motels returned
depends upon the kind of semantics used. Under the “may” semantics the result is the set of motels with
in 5 miles of any possible current position. Under the “must” semantics the result is the set of motels
which are with in 5 miles of every possible current position.

Observe that an instantaneous query may refer to all possible future histories. For example, “Display
the motels that I reach within 3 minutes” refers to all the histories, and within each history it refers to
states with a time-stamp between now and three minutes later. Under “may” semantics it will output the
set of of motels reached in three minutes in any of the possible future histories; under “must” semantics it
will output the set of motels that will be reached in three minutes in every possible future history.

Obviously, since an instantaneous query is evaluated on an infinite history, its answer may be infinite.
For example, the query: “Display the tuples (motel,reaching-time) representing the motels that I will reach,
and the time when I will do so” may have an infinite answer. To cope with this situation we will assume
in this paper that an instantaneous query pertains to a predefined (but very large) fixed amount of time.
There are other ways of dealing with this problem (they involve a finite representation of infinite sets), but
these are beyond the scope of this paper.

To motivate the second type of query, assume that a satisfactory motel is not found as a result of the
instantaneous query @, since, for example, the price is too high for the value. However, the answer to
(@ changes as the car moves, even if the database is not updated. Thus, the traveler may wish to make
the query continuous, i.e. request the system to regard it as an instantaneous query being continuously
reissued at each clock tick (while the car is moving), until cancelled (e.g. until a satisfactory motel is
found). Formally, a continuous query at time t is a sequence of instantaneous queries, one for each point
in time ¢ > t (i.e. the query is considered on the infinite history starting at time ¢'). If the answer to
a continuous query is presented to the user on a screen, the display may change over time, even if the
database is not updated.

Clearly, continuously evaluating a query would be very inefficient. Rather, when a continuous query
is entered our processing algorithm evaluates the query once, and returns a set of tuples. Each tuple
consists of an instantiation p of the predicate’s variables (i.e. an answer to the query when considered in
the noncontinuous sense) and a time interval begin to end. The tuple (p, begin, end) indicates that p is in
the answer of the instantaneous queries from time begin until the time end. The set of tuples produced in
response to a continuous query C(Q) is called Answer(CQ).

Obviously, an explicit update of the database may change a tuple in Answer(CQ). For example,
it is possible that the query evaluation algorithm produces the tuple (o0,5,7), indicating that o satisfies
the query between times 5 and 7. If the speed of the object o is updated before time 5, the tuple may
need to be replaced by, say (0,6,7), or it may need to be deleted. Therefore, a continuous query CQ
has to be reevaluated when an update occurs that may change the set of tuples Answer(CQ). In this
sense Answer(C(Q) is a materialized view. However, a continuous query in our model is different than a
materialized view, since the answer to a continuous query may change over time even if the database is
not updated.

Finally, the third type of query is a persistent query. Formally, a persistent query at time ¢ is defined
as a sequence of instantaneous queries at each future time ¢ > ¢, where the instantaneous query at #'
has two arguments (i) the database trace as of ¢’ and (ii) the time value t; note that the semantics of
this instantaneous query is defined using the possible histories with respect to the database trace at t'.
Observe that, in contrast to a continuous query, the different instantaneous queries comprising a persistent
query have the same starting point in the possible histories. These histories may differ for the different
instantaneous queries due to database updates executed after time £.

To realize the need for persistence, consider the query R = “retrieve the objects whose speed in the
direction of the X-axis doubles within 10 minutes”. Suppose that the query is entered as persistent at
time 0. Assume that for some object o, at time 0 the value of the dynamic attribute POSITION.X changes
according to the function 5¢ (recall, t is time, i.e. the speed is 5). At time 0 no objects will be retrieved,
since for each object, the speed is identical in all future database states; only the location changes from
state to state. Suppose further that after one minute the function is explicitly updated to 7¢, and after
another minute it is explicitly updated to 10¢. Then, the speed in the X direction has changed from 5 at
time 0 to 10 at time 2, and hence, at time 2 object o should be retrieved as an answer to R. But if we
consider the query R as instantaneous or continuous o will never be retrieved, since starting at any point
in time, the speed of o is identical in all states of the future database history. When entered as persistent,
the query R is considered as a sequence of instantaneous queries, all operating on the history that starts
at time 0. At time 2 this history reflects a change of the speed from 2 to 4 within two minutes, thus o will
be retrieved at that time.

In summary, the three types of queries are illustrated in the following figure.

database history

t
|
N

|
~
H

Figure 1: database history

(a) An instantaneous query at time ¢ is defined with respect to the set of possible future histories H; (i.e.
the future history beginning at t).

(b) A continuous query at time ¢ is a sequence of instantaneous queries at each time t' > ¢.

(c) A persistent query at time ¢ is a sequence of instantaneous queries, all at time ¢. The queries are
evaluated at each time #' > ¢ when the database is updated.

In contrast to continuous queries, the evaluation of persistent queries requires saving of information
about the way the database is updated over time, and we postpone the subject of persistent query evaluation
to future research. Observe that persistent queries are relevant even in the absence of dynamic variables.
In [12] we developed an algorithm for processing FTL persistent queries. Unfortunately, that algorithm
does not work when the queries involve dynamic variables.

Observe that continuous and persistent queries can be used to define temporal triggers. Such a trigger
is simply one of these two types of queries, coupled with an action and possibly an event.

3 The FTL language

In this section we first motivate the need for our language (subsection 3.1), then we present the syntax
(3.2) and semantics (3.3) of FTL. In subsection 3.4 we demonstrate the language through some example,
and in subsection 3.6 we present our query processing algorithm.

3.1 Motivation

A regular query language such as SQL or OQL can be used for expressing temporal queries on moving
objects, however, this would be cumbersome. The reason is that these languages do not have temporal
operators, i.e. keywords that are natural and intuitive in the temporal domain. Consider for example the
query @: “Retrieve the pairs of objects o and n such that the distance between o and n stays within 5
miles until they both enter polygon P”.

Assume that for each predicate G there are functions begin_time(G) and end_time(G) that give the
beginning and ending times of the first time-interval during which G is satisfied; also assume that “now”
denotes the current time. Then the query) would be expressed as follows.

RETRIEVE o,n

FROM Moving-Objects

WHERE begin_time(DIST(o,n) < 5) < now
and end_time(DIST (o,n) < 5) >
begin_time(INSIDE(o, P)) A INSIDE(n, P)).

At the end section 3.2 we show how the query @ is expressed in our proposed language, FTL. Clearly,
the query in FTL is simpler and more intuitive. The SQL and OQL queries may be even more complex
when considering the fact that the spatial predicates may be satisfied for more than one time interval.
Thus, we may need the functions begin_timel and end_timel to denote the beginning and ending times of
the first time interval, begin_time2 and end_time2 to denote the beginning and ending of the second time
interval, etc.

3.2 Syntax

The FTL query language enables queries pertaining to the future states of the system being modeled.
Since the language and system are designed to be installed on top of an existing DBMS, the FTL language
assumes an underlying nontemporal query language provided by the DBMS. However, the FTL language
is not dependent on a specific underlying query language, or, in other words, can be installed on top of any
DBMS. This installation is discussed in section 4.1.

The formulas (i.e. queries) of FTL use two basic future temporal operators Until and Nexttime. Other
temporal operators, such as Eventually , can be expressed in terms of the basic operators. The symbols
of the logic include various type names, such as relations, integers, etc. These denote the different types
of object classes and constants in the database. We assume that, for each n > 0, we have a set of n-ary
function symbols and a set of n-ary relation symbols. Each n-ary function symbol denotes a function that
takes n-arguments of particular types, and returns a value. For example, + and * are function symbols
denoting addition and multiplication on the integer type. Similarly, <, > are binary relation symbols
denoting arithmetic comparison operators. The functions symbols are also used to denote atomic queries,
i.e. queries in the underlying nontemporal query language (e.g. OQL). We assume that all atomic queries
retrieve single values. For example, the function “RETRIEVE (o0.height) WHERE o0.id = 100” denotes the
query that retrieves the height of an object whose id is 100. Atomic queries can have variables appearing
in them. For example, “RETRIEVE (0.height) WHERE o0.id = y” has the variable y appearing free in it;
for a given value to the variable y, it retrieves the height of the object whose id is given by y.

Functions of arity zero denote constants and relations of arity zero denote propositions.

The formulas of the logic are formed using the function and relation symbols, the object classes
and variables, the logical symbols —, A, the assignment quantifier <, square brackets [,] and the temporal
modal operators Until and Nexttime. In our logic, the assignment is the only quantifier. It binds a variable
to the result of a query in one of the database states of the history. One of the advantages of using this
quantifier rather than the First Order Logic (FOL) quantifiers is that the problems of safety are avoided.
This problem is more severe when database histories (rather than database states) are involved. Also,
the full power of FOL is unnecessary for the sequence of database states in the history. The assignment
quantifier allows us to capture the database atomic query values at some point in time and relate them to
atomic query values at later points in time.

A term is a variable or the application of a function to other terms. For example, time + 10 is a term;
if x,y are variables and f is a binary function, then f(z,y) is a term; the query “RETRIEVE o.height
WHERE o.id = y” specified above is also a term. Well formed formulas of the logic are defined as follows.
If ¢4, ...,t, are terms of appropriate type, and R is an n-ary relational symbol, then R(ti,...,t,) is a well
formed formula. If f and g are well formed formulas, then —f, f A g, f Until g, Nexttime f and ([z « t]f)

are also well formed formulas, where z is a variable and ¢ is a term of the same type as x and may contain
free variables; such a term ¢ may represent a query on the database. A variable x appearing in a formula
is free if it is not in the scope of an assignment quantifier of the form [z < ¢].

In our system, a query is specified by the following syntax:
RETRIEVE <target-list> WHERE <semantic-spec> <condition>.
Here <condition> is an FTL formula in which all the free variables are object variables. The specification
<target-list> is a list of attributes of all object variables appearing free in the condition part. The clause
<semantic-spec> can be one of the two key words may or must, and it specifies the semantics to be used
in processing the query. We call a query to be a “may” query if its semantic clause is the key word “may”,
otherwise the query is called a “must” query.

For example, the following query retrieves the pairs of objects o and n such that, on all future histories,
the distance between o and n stays within 5 miles until they both enter polygon P (the FTL formula is
the argument of the WHERE clause) in all possible future histories:

RETRIEVE o,n
WHERE must DIST(o,n) < 5
Until (INSIDE(o, P)) A INSIDE(n, P)

3.3 Semantics

Intuitively, the semantics are specified in the following context. Let so be the state of the database when
a query f is entered. The formula f is evaluated on the history starting with sg.

We define the formal semantics of our logic as follows. We assume that each type used in the logic
is associated with a domain, and all the objects of that type take values from that domain. We assume
a standard interpretation for all the function and relation symbols used in the logic. For example, <
denotes the standard less-than-or-equal-to relation, and + denotes the standard addition on integers. We
will define the satisfaction of a formula at a state on a history with respect to an evaluation, where an
evaluation is a mapping that associates a value with each variable. For example, consider the formula
[t < RETRIEV E(0)] Nexttime RETRIEV E(o) # x, that is satisfied when the value of some attribute
of o differs in two consecutive database states. The satisfaction of the subformula RETRIEV E(0) # x
depends on the result of the atomic query that retrieves o from the current database, as well as on the
value of the variable z. The value associated with = by an evaluation is the value of o in the previous
database state.

The definition of the semantics proceeds inductively on the structure of the formula. If the formula
contains no temporal operators and no assignment (to the variables) quantifiers, then its satisfaction at a
state of the history depends exclusively on the values of the database variables in that state and on the
evaluation. A formula of the form f Until g is satisfied at a state with respect to an evaluation p, if and only
if one of the following two cases holds: either g is satisfied at that state, or there exists a future state in the
history where g is satisfied and until then f continues to be satisfied. A formula of the form Nexttime f
is satisfied at a state with respect to an evaluation, if and only if the formula f is satisfied at the next
state of the history with respect to the same evaluation. A formula of the form [z «+ t]f is satisfied at a
state with respect to an evaluation, if and only if the formula f is satisfied at the same state with respect
to a new evaluation that assigns the value of the term ¢ to = and keeps the values of the other variables
unchanged. A formula of the form f A g is satisfied if and only if both f and g are satisfied at the same
state; a formula of the form —f is satisfied at a state if and only if f is not satisfied at that state.

In our formulas we use the additional propositional connectives V (disjunction), = (logical impli-
cation) all of which can be defined using — and A. We will also use the additional temporal operators
Eventually and Always which are defined as follows. The temporal operator Eventually f asserts that f
is satisfied at some future state, and it can be defined as true Until f. Actually, in our context a more
intuitive notation is often later f, but we will use the traditional Eventually f. The temporal operator
Always f asserts that f is satisfied at all future states, including the present state, and it can be defined as
— Eventually =f. We would like to emphasize that, although the above context implies that f is evaluated
at each database state, our processing algorithm avoids this overhead.

Let @ be an instantaneous query specified at time ¢ using the syntax given at the end of the last
subsection. Let the FTL formula f denote the condition part of (), and let T denote the target list of Q.
We define the semantics based on the jsemantic-specj, clause in (). Let o be the database trace denoting
the sequence of updates up to t. Let H be the set of all possible future database histories corresponding
to o as of now, i.e. as of time ¢. For any h € H, let F}, be the set of all evaluations p to the free variables

in f such that f is satisfied at the beginning of h with respect to the evaluation p. Let R} denote the set
of all tuples ¢ obtained by applying some evaluation in Fj, to the target list T', i.e. R, = {p(T) : p € Fp}.
Let May_Answer(Q) = Uhth Ry and Must_Answer(Q) = ﬂhth Ry. If @ is a “may” query, then we
define the semantics of @), i.e. the answer to @), to be May_Answer(Q), and if Q) is a “must” query its
semantics is defined to be Must_Answer(Q). Thus, it is easy to see that the answer computed for the
“may” query indicates possibility with respect to at least one of the future possible histories, while the
answer computed with for a “must” query denotes definiteness of the result. Both these answers coincide
when all the dynamic attributes are deterministic, i.e. H contains a single history.

3.4 Examples

In this subsection, we show how to express some queries in FTL. For expressive convenience, we also intro-
duce the following real-time (i.e. bounded) temporal operators. These operators can be expressed using the
previously defined temporal operators and the tirme object. (see [12]). Eventually_within_c (g) asserts
that the formula g will be satisfied within ¢ time units from the current position. Eventually after_c (g)
asserts that g holds after at least ¢ units of time. Always_for_c (g) asserts that the formula holds con-
tinuously for the next ¢ units of time. The formula (g until_within_c h) asserts that there exists a future
instance within ¢ units of time where h holds, and until then g continues to be satisfied.

The following query retrieves all the objects o of type “civilian” that may enter a restricted area P
within three units of time from the current instance.

(1) RETRIEVE o
WHERE may (o.type ="civilian” A P.type = "restricted” A
Eventually_within ¢ INSIDE(o, P))

The following query retrieves all the civilian objects o that definitely (i.e. must) enter a restricted area
P within three units of time, and stay in P for another 2 units of time.

(IT) RETRIEVE o
WHERE must (o.type ="civilian” A P.type ="restricted” A
Eventually_within 3 (INSIDE(o, P)A
Always for_ 2 INSIDE(o, P)))

The following query retrieves all the objects o that may enter the polygon P within three units of time,
stay in P for two units of time, and after at least five units of time enter another polygon Q.

(I11) RETRIEVE o
WHERE may (Eventually_within_3
[(INSIDE(o, P)A
Always_for_2
(INSIDE(o, P))A
Eventually_after_5
INSIDE(o0,Q)])

3.5 Algorithm for evaluation of MOST queries

Earlier in subsection 2.3, we have indicated two different ways for representing the positions of moving
objects. In the reminder of this paper, we use the first of these schemes. For an object 0 moving on a
route, we assume that o.ubs and o.lbs, respectively, denote the upper and lower bounds on the speed of
the object and that these bounds are positive ; we also assume that the attribute o.route gives the identity
of the route on which the object is traveling. We say that an object o is moving freely in 2-dimensional
space if its velocities in the x and y directions are independent. For such an object o, we let 0.X.ubs and
0.X.lbs denote the upper and lower bound speeds in the direction of the x-axis, and o0.Y.ubs and 0.Y.lbs
represent the corresponding speeds in the direction of the y-axis; each of these speeds can be positive or
negative. (Note that for an object that moves on a route, the direction of its motion is determined by the
route and its speed will give its state of motion at that point; on other hand for an object moving freely in
2-dimensional space we need to know its speeds in both the x and y directions). For a moving object, any
of the above sub-attributes can be explicitly updated.

In this subsection, we consider the problem of evaluating queries in the MOST model. An FTL formula
f is said to be a restricted conjunctive formula, if it has no negations appearing in it, the only temporal
operators appearing in it are until, until_within_c and Eventually_within_c, and the time_stamp or
the time variable does not appear in it; the last condition implies that for every query ¢ that appears
on the right hand side of an assignment in f (i.e. as in [z < ¢]) the value returned by ¢ at any time is
independent of the time when it is evaluated and is only a function of the values to the free variables in
q and the current positions of the objects. This condition also ensures that satisfaction of a non-temporal
predicate when an object is at a particular position depends only on the position of the object but not the
time when it reached the position. Also, note that f does not contain the nexttime operator.

The following theorem shows that the problem of evaluating a “may” query whose condition part is
a conjunctive FTL formula is PSPACE-hard when the objects are moving freely in 2-dimensional space.
This theorem is proved by exhibiting a straightforward reduction from the model-checking problem for
conjunctive formulas which is a known PSPACE-hard problem [10].

THEOREM 1: Given a MOST database D modeling objects moving freely in 2-dimensional space,
and given a “may” query whose condition part is given by a conjunctive FTL formula containing one free
moving object variable, the problem of evaluating the query is a PSPACE-hard problem. O

Now, we consider the problem of evaluating “may” queries where the objects are moving on routes.
Consider a query) whose condition part is given by a conjunctive formula f with one free moving object
variable 0. Now consider an object, say ol, whose speed is in the range [/, u]. There are many possible
histories corresponding to the varying speeds of ol. Let h be the possible history corresponding to the
case where the object moves with the highest speed u at all times. Intuitively, it seems to be the case
that if there is a possible history h' such that h' satisfies f at the first state with respect to the evaluation
where the variable o is assigned object o1, then f is also satisfied at the beginning of h with respect to the
same evaluation. This is due to the following properties: (a) in both the histories object 0ol goes through
the same positions (possibly at different times), (b) all the time bounds in the formula f are only upper
bounds, and if these bounds are met when the object is moving at a lower speed then they will definitely
be met when the object is moving at a higher speed, and (c) time does not appear any where else in the
formula; this ensures that satisfaction of a non-temporal predicate at a particular time only depends on
the position of the object but not the time when it reached the position.

Now, we have the following theorem.

THEOREM 2: Let f be a conjunctive FTL formula with one free object variable o ranging over moving
objects, ol be an object moving on a route with speed in the range [I,u], p be an evaluation in which o is
mapped to the object ol, and h be a history in which ol is moving with the maximum speed u. Then, f is
satisfied at the beginning of some possible history with respect to the evaluation p iff it is satisfied at the
beginning of h with respect to p.

Proof: Let h' be any possible history that satisfies f at the beginning with respect to the evaluation
p. For each i > 0, let s; and t; denote the i*" states in h and h' respectively. Since, in a history a new
state is added whenever the position of any object changes, it is the case that the distance of any object in
successive states of a history either remains unchanged or changes by 1. Hence, we can divide a history in
to a sequence of sub-sequences By, By, ..., B;, ... of successive states such that ,for each i > 0, the distance
of object 0l in any two states of B; is same, and its distance in a state in B; differs from a state in B; 1 by
1. Let By, By, ...B;, ... be the sequence of sub-sequences corresponding to h; similarly, let Cy, C, ..., C}, ...
be such a sequence corresponding to h'. Since, in both the histories ol starts from the same initial position,
it is the case that for each ¢ > 0, the distance of o0l in any state in B; equals its distance in any state in
C;. For each i > 0, we say that every state in B; corresponds to every state in C; and vice versa. Let g be
a subformula of f. Now, by a simple induction on the length of g, we show that
(*) If ¢ is satisfied at ¢; in h' and s; is any state in h that corresponds to ¢; then g is also satisfied at s; in
h'.

The proof is as follows. If g is an atomic formula then (*) holds because the satisfaction of g, with respect to
an evaluation, only depends on the position of object 01, and it is independent of the time. The non-trivial
case in the induction is when g is of the form g,until_within_c g where c is a positive constant. Assume
that ¢ is satisfied at ¢; in hA’. This implies that there exists some i’ > 4 such that g¢o is satisfied at t;,
and for all k, i < k < i', g1 is satisfied at #;; further more, the difference in the value of the time_stamp
variable in the states ¢;; and #; is bounded by c. Clearly, there is a state s; in h that appears after s; and
that corresponds to t;; furthermore, every state appearing between s; and sj corresponds to some state
appearing between ¢; and t;. By induction, we see that g, is satisfied at s;/, and g; is satisfied at s; and
at all states appearing after s; but before s; . Also, the distance traversed by ol from state s; to s; is

same as that between t; and ¢;;. Since, in history h, ol is traveling at a higher speed, it is the case that
difference in the values of time_stamp in state s;; and s; is smaller than between t; and ¢;. From all this,
we see that the formula g;until_within_c g, is also satisfied at state s; in h. The other cases in the proof
are straightforward. O

Theorem 2 shows that, in order to answer the “may” queries whose condition part is a restricted con-
junctive formula with a single free variable that ranges over moving objects, it is enough if we consider the
single history where the objects are moving at the maximum speed. This corresponds to the deterministic
case.

In the reminder of this section we present an algorithm for evaluating FTL queries for the case when the
objects are moving at constant speeds on different routes. Our algorithm works for class of queries given
by conjunctive formulas, and for the case when all the dynamic variables are deterministic. A conjunctive
formula is an FTL formula without negation and without the nexttime operator and without any reference
to the time_stamp variable. Even though conjunctive formulas can not explicitly refer to the time_stamp
variable, one can express real-time properties using the real time temporal operators. Note that the class
of conjunctive formulas is superset of the class of restricted conjunctive formulas.

In practice, most queries are indeed expressed by conjunctive queries. For instance, all the example
queries we use in this paper are such. One of the main reasons for the restriction to conjunctive formulas
is safety (i.e. finiteness of the result); negation may introduce infinite answers. The handling of negation
can be incorporated in the algorithm, but this is beyond the scope of this paper. An additional restriction
of the algorithm is that it works only for continuous and instantaneous queries (i.e. mnot for persistent
queries).

For a query CQ specified by the formula f with free variables (x1, ..., z;) the algorithm returns a relation
called Answer(CQ) (this relation was originally discussed in subsection 2.4), having k + 2 attributes. The
first k attributes give an instantiation p to the variables, and the last two attributes give a time interval
during which the instantiation p satisfies the formula.

The system uses this relation to answer continuous and instantaneous queries as follows. For a con-
tinuous query C'@), the system presents to the user at each clock-tick ¢, the instantiations of the tuples
having an interval that contains ¢. So, for example, if Answer(C(Q) consists of the tuples (2, 10,15), and
(5, 12,14), then the system displays the object with id = 2 between clock ticks 10 and 15, and between
clock-ticks 12 and 14 it also displays the object with id = 5.

For an instantaneous query, the system presents to the user the instantiations of the tuples having an
interval that contains the current clock-tick.

The FTL query processing algorithm

Let f(x1,za,...,x) be a conjunctive FTL formula with free variables z1, z, ..., 2 such that the variable
titne_stamp is also not referenced in it. We assume that the system has a set of objects O. Some of these
objects are stationary and the others are mobile. The positions (i.e. the X, Y and Z coordinates) of the
stationary objects are assumed to be fixed, while the positions of the mobile objects are assumed to be
dynamic variables. Without loss of generality we assume that the time when we are evaluating the query
is zero. The current database state reflects the positions of objects as of this time, and furthermore, we
assume that for each dynamic variable we have functions denoting how these variables change over time.
As a consequence, the values of static variables at any time is the same as their value at time zero, and
the values of dynamic variables at any time in the future are given by the functions which are stored in
the database. Thus, the future history of the database is implicitly defined.

For each subformula g of f (including f itself), our algorithm computes a relation R,. Let g(z1, ..., xy)
be a subformula containing free variables z1, ..., x;. The relation R, will have (k + 2) attributes; the first
k attributes correspond to the k variables; the last two attributes in each tuple specify the beginning and
ending of a time interval; we call this as the interval of the tuple. Each tuple in R, denotes an instantiation
p of values to the free variables in g and an interval I (specified by the last two columns) during which the
formula g is satisfied with respect to p.

The algorithm computes R, inductively, for each subformula g in increasing lengths of the subformula.
To do this it executes a sequence of one or more SQL queries whose result will be the desired relation R,.
We only describe how to generate these SQL queries. After the termination of the algorithm, we will have
the relation Ry corresponding to the original formula f.

The base case in our algorithm is when g is an atomic predicate R(x1,...,2y) such as a spatial relation
etc. In this case, we assume that there is a routine, which for each possible relevant instantiation of values
to the free variables in g, gives us the intervals during which the relation R is satisfied. Clearly, this

algorithm has to use the initial positions and functions according to which the dynamic variables change.
For example, if R is the predicate DIST (z1,z2) < 5, then the algorithm gives, for each relevant object pair
01,09, the time intervals during which the distance between them is < 5 (for this example, if we assume
that all objects are point objects, and that z; ranges over moving objects, and x5 ranges over stationary
objects, and that we have a relational database containing information about the the routes and speeds of
moving objects and about the positions of statinary objects on the routes, then we can write an SQL query
that computes a relation denoting the the ids of objects and the time intervals during which the predicate
R is satisfied). We assume that the relation given by the atomic predicates are all finite. For cases where
these relations are infinite in size, we need to use some finite representations for them and work with these
representations; this is beyond the scope of this paper and will be discussed in a later paper.

For the case when g is not an atomic predicate, we compute the relation R, inductively based on the
outer most connective of g as given below.

e Let ¢ = g1 A g2. In this case, let Ry, Ry be the relations computed for g; and g, respectively, i.e
R; = Ry, fori =1,2. For a given instantiation p, if g; is satisfied during interval I; and g, is satisfied
during I, then g is satisfied during the interval I; N I5. The relation R for g is computed by joining
the relationships Ry and R as follows: the join condition is that common variable attributes should
be equal and the interval attributes should intersect; the retrieved tuple copies all the variable values,
and the interval in the tuple will be the intersection of the of the intervals of the joining tuples. It is
faily easy to see how we can write a single SQL query that computes R, from Ry, and Rg,.

e Let g = g1 Until g9, and let R; and R, be the relations corresponding to g; and g, respectively. Let
p+2,q+2 be the number of columns in R; and R respectively. First, we compute another relation S
from R; as follows. We define a chain in Ry to be a set T of tuples in R; that give same values to the
first p columns and such that the following property is satisfied: if I denotes the lowest value of the
left end points of all intervals of tuples in 7" and u denotes the highest value of the right end points
of these tuples ,then every time point in the interval [l,u] is covered by an interval of some tuple in
T (i.e., the interval [I,u] is the union of all the intervals in T"); we define T' to be a mazimal chain if
no proper super set of it is a chain. The relation S is obtained by having one tuple corresponding
to each maximal chain 7" in R; whose first p columns have the same values as those in 7" and whose
interval is the interval [I, u] as defined above. For example, if a maximal chain has three tuples with
intervals [10,20], [15,30] [11,40] then these will be represented by a single tuple whose interval is
[10, 40].

The resulting relation S satisfies the following property. For any two tuples ¢,¢' € S, if ¢,# match
on the first p columns (i.e. columns corresponding to the variables), then their intervals will be
disjoint and furthermore these intervals will not even be consecutive; the non-consecutiveness of the
intervals means that there is a non-zero gap separating intervals in tuples that give identical values

to corresponding variables;

The following SQL query computes S from R;. For any tuple ¢, we let ¢.l and t.u denote the left and
right end points of the interval of t.

SELECT(< list >,t1.0,t2.u)
FROM R, t1, R, 2
WHERE COND-B AND
NOT EXISTS (
SELECT 3
FROM R, 13, R, t4
WHERE COND-C AND
NOT EXISTS (
SELECT 5
FROM R, t5
WHERE COND-D))

In the above query, the < list > in the target list is the list of the first p attributes of t1. COND-B
specifies that 1 and ¢2 give identical values to the first p columns and that ¢1.l < t2.u, and there is
no other tuple whose interval contains t2.u + 1 or 1.l — 1; the later condition guarantees maximality
of the chain. The WHERE clause of the outermost query states that ¢1.l and ¢2.] denote the left and

4

right ends of a chain. This is indicated by stating that there are no tuples 3 and ¢4 whose intervals
intersect with the interval [¢1.],¢2.u], and such that ¢3.u < #4.l and such that there is a gap between
t3.u and t4.l; COND-C specifies the first of the two conditions; the existence of a gap between t3.u and
t4.l is indicated by the inner most subquery starting with the clause “NOT EXISTS”; this subquery
states that there is no tuple t5 whose interval intersects with the interval [¢3.u, t4.1]; COND-C states
the later condition. COND-B,COND-C and COND-D also specify that the first p columns of ¢1 thru
t5 match.

Observe that if ¢, ¢, are any two tuples belonging to S and R,, respectively, such that their intervals
intersect, and ¢;.l < 5.1, and their values on common columns match, then g is satisfied throughout
the interval [t1.l, ¢2.u]. Now, the relation R, is computed from S and R, as follows. Let A be the
union of all column names in S and R, that correspond to variables. The relation R, will contain
|A| + 2 columns. For each ¢; € S and t» € R, that satisfy the above properties, the relation R,
will contain a tuple ¢ such that ¢.I = ¢;.0,t.u = ts.u, and the first |A| columns of ¢ contain the
corresponding values from ¢; or ¢5. It is fairly straightforward to write a SQL query that computes
R, from S and R».

Let ¢ = ¢ until_within_c g, and R;, R, be the relations corresponding to ¢g; and go respectively.
Let S be the relation computed from R; as given in the previous case (i.e. the case for “until”). Let
t; € S and ty € R> be tuples that match on common columns and such that their intervals intersect
and such that 1.0 < to.0. Let d = max{tl.l,t2.l — ¢}. It should be easy to see that g is satisfied
throughout the interval [d, t2.u] with respect to the evaluation given by columns corresponding to
variables in #; and ¢5. For every such tuples ¢; and f3, there will be a tuple ¢ in R, with t.I = d,
t.u = to.u and such that the variable columns in ¢ have the same values as in t; or t». It should be
easy to write a SQL query that computes R, from S and R».

Let g = ¢g1 until_after_c go. Recall that g is satisfied at some point if go is satisfied at some point
which is at least ¢ time units later and until then g; is satisfied. Let Ry, R»,S,t; and t, be as in
the previous case. Let e = min{¢;.u,t2.u}. Also assume that ¢1.l < e — ¢. Now, it is easy to see
that g is satisfied through out the interval [t;.l, e — ¢]. Corresponding to each t1,ts satisfying the
above conditions, the relation R, will have a tuple ¢ such that ¢.l = t;.l, t.u = e — ¢ and the variable
columns in ¢t have the same values as the corresponding columns in t; or to. We can easily write an
SQL query that computes R, from S and R,.

Let g = [y « ¢] g1, and let Ry be the relation corresponding to ¢g;. The atomic query ¢ may have
some free variables. For example, ¢ may be height(o) denoting the height attribute of the object
given by the variable o. We assume that the value of ¢ is given by a relation () with p + 3 columns
where the first p columns correspond to the free variables in ¢, the (p 4+ 1)st column is the value of ¢
and the last two columns specify a time interval. Each tuple ¢ in () denotes the value of the atomic
query g during the interval specified by the last two columns, and for the the instantiation of free
variables specified by the first p columns; the value of the query is given by the p + 1st column. In
above example,) will have four columns; the first column gives the object id, the third and fourth
columns give an interval and the second column gives the height of the object during this interval.
Now the relation R for g is obtained by joining) and R; where the join condition requires that
columns corresponding to common variables should be equal, the column corresponding to the y
variable in Ry should be equal to the (p + 1)st column of (), and the time intervals should intersect.
For two joining tuples #; in R; and 2 in @), in the output tuple we copy all variable columns from #;
and t, excepting the one corresponding to variable y, and the time interval in the output tuple will
be the intersection of the time intervals in ¢; and ts.

Discussion

In this section we first discuss the implementation of our proposed data model on top of existing DBMS’s
(subsection 5.1), then we discuss architectural issues, particularly the implications of disconnection and
memory limitations of computers on moving objects (5.2), and various query processing strategies in a
mobile distributed system (5.3).

4.1 Implementing MOST on top of a DBMS

Our system proposed in this paper (including an FTL language interpreter) can be implemented by a
software system, called MOST, built on top of an existing DBMS. Such a system can add the capabilities
discussed in this paper to the DBMS as follows. We store each dynamic attribute A as its sub-attributes; two
of the sub-attributes are A.initialvalue and A.updatetime; the other subattributes specify how the attribute
value changes over time. In case of when A is the position of a moving object, the other subattributes may
be the upper and lower bounds on the speed, or upper and lower bound functions of time that denote the
possible positions of the object at any time t.

Any query posed to the DBMS is first examined (and possibly modified) by the MOST system, and so
is the answer of the DBMS before it is returned to the user. In the rest of this subsection we sketch the
modifications to queries and answers of the underlying DBMS. For simplicity our exposition will assume
the relational model and SQL for the underlying DBMS. However, the same ideas can be extended to
object-oriented model.

Recall that in section 4, we considered the problem of evaluating “may” queries in a MOST database
system modeling the motion of objects. There we had shown that when objects are moving on well defined
routes, and when there is uncertainty in their speeds, the evaluation problem for “may” queries, whose
condition part is a restricted conjunctive formula, can be reduced to the deterministic case where the
objects are traveling at their maximum speeds. We also presented a method for processing “may” queries
for the the deterministic case when the condition part is given by an arbitrary conjunctive FTL formula
f. This method, inductively, computes a relation R, corresponding to each subformula g of f. For the
case when g has no temporal operators, we assumed that the relation R, are computed by some routines.
The computation of Ry, for the case when g contains temporal operators, is achieved by translation in
to SQL queries that refer to previously computed relations corresponding to smaller subformulas. Thus
we can implement the above method on top of an existing DBMS that supports SQL provided we have a
method for computing the relations R, for the case when g has no temporal operators. The method that
we outline below can be employed for this purpose also.

In this subsection, we address the problem of evaluating “may” queries whose condition part has no
temporal operators and when there is uncertainty in the values of dynamic attributes. Our method applies
to any type of uncertainty (i.e. it is not limited to the case of moving objects whose speeds are specified to
lie between two bounds). Our method can be employed, as specified in the previous paragraph, to process
non-temporal subformulas in the algorithm of section 4.

Now consider any “may” query whose condition part is non-temporal. If the query does not contain a
reference to a dynamic the query is simply passed to the DBMS and the answer returned to the user.

Now assume that the query contains references to dynamic attributes, but not temporal operators. We
will distinguish between references in the SELECT and WHERE clauses. If the query contains a reference
to a dynamic attribute A only in the SELECT clause (i.e. in the target list), then the MOST system
modifies the query as follows. Instead of A, the query retrieves the sub-attributes of A from the DBMS;
and the MOST system computes the current range of possible values of A for each retrieved object, before
returning it to the user.

Assume now that the WHERE clause is F', which is a boolean combination of atoms (for example, an
atom may be A > 5). Cousider first the case where there is only a single atom p that refers to dynamic
attributes in F'. Before passing the original query @ to the DBMS the MOST system replaces () by two
queries, @1 and (2. The transformation is based on the following equivalence. F' = (F' Ap) V (F" A —p),
where F' is F' with p replaced by true and F" is F' with p replaced by false. ;1 and Q- are defined as
follows. The target list of ()1 and) consists of the target list of), plus the subattributes of the dynamic
attributes in p. The FROM clause of ()1 and () is identical to that of Q. The WHERE clause of @ is F’
and that of Q)5 is F". @)1 and Q)5 are submitted to the underlying DBMS, and the results are processed as
follows before returning them to the user. The atom p is evaluated on each tuple in the result of)1, and
the atom —p is is evaluated on each tuple in the result of Q2. (To do these evaluations the MOST system
computes the current values of the dynamic attributes appearing in p using the retrieved sub-attributes.)
The tuples that do not satisfy the respective atoms are eliminated, and the projection of the union of the
resulting tuples on the original target list is returned to the user.

If the WHERE clause has multiple atoms referencing dynamic attributes then we can do as follows. Let
P1, .., pr be all such atoms. We first write F as (F' Ap1) V (F" A—p1). We can repeat the above procedure
for other atoms also to rewrite F' into an equivalent condition of the form (Fy AG1) (Fo AG3) ... A (F. ANG,)
where the clauses F}, Fy, ..., F,. do not contain any dynamic attributes, and each clause G; is a condition
involving the atoms py, ..., pr. In the worst case, r may be as much as 2¥. However, by identifying terms with

common subexpressions, in practice, we can get r to be much smaller. As explained earlier, corresponding
to each F;, we create a query @; whose WHERE clause is Fj; the condition G; is evaluated on each tuple
in the result of (J; by computing the current values of the dynamic attributes mentioned in ;. All these
results are combined to obtain the answer to the main query.

4.2 Continuous queries from moving objects

Consider a centralized DBMS equipped with the MOST capability. Suppose that a continuous query C'Q)
is issued from a moving object M. M may or may not be one of the objects represented in the database.
After the centralized DBMS computes the set Answer(CQ), there are two approaches of transmitting it
to M, immediate and delayed.

In the immediate approach, the whole set is transmitted immediately after being computed. For each
tuple (S, begin, end), the computer in M is presenting S between times begin and end. However, remember
that explicit updates of the database may result in changes to Answer(CQ). If so, the relevant changes
are transmitted to M.

The immediate approach may have to be adjusted, depending on the memory limitations at M. For
example, M’s memory may fit only B tuples, and the set Answer(C(@Q) may be larger. In this case, the
set Answer(C(Q) needs to be sorted by the begin attribute, and transmitted in blocks of B tuples.

The delayed approach of transmitting the set Answer(CQ) to M is the following. Each tuple
(S, begin, end) in the set is transmitted to M at time begin. The computer at M immediately displays S,
and keeps it on display until time end.

Of course, intermediate approaches, in which subsets of Answer(CQ) are transmitted to M periodically,
are possible.

The choice between the immediate and delayed approaches depends on several factors. First, it depends
on the probability that an update to Answer(C(Q)) can be propagated to M (i.e. that M is not disconnected)
before the effects of the update need to be displayed. Second, it depends on the frequency of updates to
Answer(C(Q), and the cost of propagating these updates to M.

4.3 Distributed query processing

Assume now that each object represented in the database is equipped with a computer, and the database
is distributed among the moving objects. In particular, assume that the distribution is such that each
object resides in the computer on the moving vehicle it represents, but nowhere else. This is a reasonable
architecture in case there are very frequent updates to the attributes of the moving object. For example, if
the motion vector of the object changes frequently, then these changes may only be recorded at the moving
object itself, rather than transmitting each change to other moving objects or to a centralized database.

Assume that each query is issued at some moving object. We distinguish between three types of MOST
queries. The first, called self-referencing query, is a predicate whose truth value can be determined by
examining only the attributes of the object issuing the query. For example, “Will I reach the point (a,b)
in 3 minutes” or, “When will I reach the point (a,b)” are self-referencing queries. Clearly, self-referencing
queries can be answered without any inter-computer communication.

The second type of queries, called object queries, is a predicate whose truth value can be determined
for an object independently of other objects. For example, “Retrieve the objects that will reach the point
(a,b) in 3 minutes” is an object query; for each object we can determine whether or not it satisfies the
predicate, independently of other objects. To answer an object query, a mobile computer needs to be
able to communicate with the other mobile computers. Assuming this capability, there are two ways to
processing such a query issued from mobile object M. First is to request that the object of each mobile
computer be sent to M; then M processes the query. Second is to send the query to all the other mobile
computers; each computer C for which the predicate is satisfied sends the object C' to M. The second
approach is more efficient since it processes the query in parallel, at all the mobile computers. The second
approach is also more efficient for continuous queries. In this case, the remote computer C evaluates the
predicate each time the object C' changes, and transmits C' to M when the predicate is satisfied. Using
the first approach C would have to transmit C to M every time the object C' changes.

The third type of query, called relationship query, is a predicate whose truth value can only be de-
termined given two or more objects. For example, the query “Retrieve the objects that will stay within
2 miles of each other for at lease the next 3 minutes” is a relationship query. The most efficient way to
answer a relationship query is to send all the objects to a central location. The most natural location is

the computer issuing the query. When a relationship query is presented at mobile computer M, it requests
the objects from all other mobile computers. Then M processes the query.

5 Comparison to relevant work

One area of research that is relevant to the model and language presented in this paper is temporal
databases [9, 13, 15]. The main difference between our approach and the temporal database works is that,
by and large, those works assume that the database varies at discrete points in time, and between updates
the values of database attributes are constant ([9] uses interpolation functions to some extent). In contrast,
here we assume that dynamic attributes change continuously, and consequently the temporal data model
is different than the data model presented in this paper. Thus, it is also not clear if and how temporal
extensions to deal with imcomplete information (see [4, 7] are applicable to our context. Additionally,
temporal languages other than FTL can be used to query MOST databases, but any other processing
algorithm will have to be modified to handle dynamic attributes.

Another relevant area is constraint databases (see [5] for a survey). In this sense, our dynamic attributes
can be viewed as a constraint, or a generalized tuple, such that the tuples satisfying the constraint are
considered in the database. Constraint databases have been separately applied to the temporal (see [2, 3, 1])
domain, and to the spatial domain (see [6]). However, the integrated application for the purpose of
modeling moving objects has not been considered. Furthermore, this integrated application has not been
considered since the model is different than ours, thus perhaps inappropriate for modeling moving objects.
The main difference is that in constraint databases all the tuples (or objects) that satisfy the constraint (in
our case the values of the function at all time-points) are considered to be in the database simultaneously.
In contrast, in our model these values are not in the database at the same time; at any point in time a
different value is in the database.

Methods in object oriented systems are also relevant to our model. In an object-oriented system, the
value of a dynamic attribute may be computed by a method (i.e. a program stored with the data) using
the sub-attributes of a dynamic attribute. However, in this case, as far as the DBMS is concerned the
method is a black-box, and the only way to answer a query such as “retrieve the objects that will intersect
a polygon P at some time between now and 5pm” is to evaluate the query at every point in time between
now and 5pm. In contrast, in our model we “open” the black box, i.e. expose to the DBMS the way
the dynamic attribute changes. Thus the DBMS can currently compute which objects will intersect the
polygon in the future.

Another body of relevant work is location-dependent software systems (e.g. [8, 16, 2]). There are
three differences between that work and the our work presented in this paper. First, although independent
of a particular database management system our work pertains to incorporation of mobility in database
systems. Second, our work pertains to situations where the mobile clients are aware not only of their
current location, but also of their movement, i.e. their future location. Indeed for airplanes and cars
moving on the highway, this is often the case. Third, in our model the answer to a query depends not only
on the location of the client posing the query, but also on the time at which the query is posed.

In our earlier work ([12]) we introduced FTL for specifying trigger conditions in active databases. The
algorithm presented there does not work in the MOST model, since it can only deal with static attributes.

In [11] we considered the same issues as here, but we did not deal with imprecision; namely, a dynamic
attribute of an object has a unique value at a particular time, rather than a set of possible values.

6 Conclusion and future work

In this paper we introduced the the MOST data model for representing moving objects. It has two main
aspects. First is the novel notion of dynamic attributes, i.e. attributes that change continuously as time
passes without being explicitly updated. There can be uncertainty in the value of the dynamic variables.
Such variables are represented by sub-attributes that specify their values over time. For moving objects,
these sub-attributes specify upper and lower bounds on the speeds of the objects; or they give a pair of
functions of time, and at any time the variable may have any value in the range whose lower and upper
bounds are specified by the two functions. A user can query future states of database values. This motivates
the second aspect of our data model, namely the query language, FTL. It enables the specification of future
queries, i.e. queries that refer to future states of the database.

In support of the new data model, in this paper we developed algorithms for processing queries specified
in FTL, we discussed a method of indexing dynamic attributes, and we discussed methods for building the
capabilities of MOST on top of existing database management systems. We also identified several types of
queries arising in the new data model, namely instantaneous, continuous and persistent queries. We also
discussed issues of query processing in a mobile and distributed environment.

In the future, we intend implement the MOST data model on top of an existing DBMS, e.g. Sybase. We
intend to further explore various processing methods for the three types of queries, particularly in mobile
and distributed environments. We intend to experimentally compare various mechanisms for indexing
dynamic attributes.

References

[1] M. Abadi and Z. Manna. Temporal logic programming. Journal of Symbolic Computation, Aug. 1989.

[2] M. Baudinet, M. Niezette, and P. Wolper. On the representation of infinite data and queries. ACM Symposium
on Principles of Database Systems, May 1991.

[3] J. Chomicki and T. Imielinski. Temporal deductive databases and infinite objects. ACM Symposium on
Principles of Database Systems, March 1988.

[4] C. Dyreson and R. Snodgrass. Valid-time indeterminacy. International Conf. on Data Eng., Apr. 1993.

[5] P. Kanellakis. Constraint programming and database languages. ACM Symposium on Principles of Database
Systems, May 1995.

[6] J. Paradaens, J. van den Bussche, and D. V. Gucht. Towards a theory of spatial database queries. ACM
Symposium on Principles of Database Systems, 1994.

[7] Y.-C. P. S. Gadia, S. Nair. Incomplete information in relational temporal databases. FEighteenth VLDB, Aug.
1992.

[8] B. Schilit, M. Theimer, and B. Welch. Customizing mobile applications. USENIX Symposium on Location
Independent Computing, Aug. 1993.

[9] A. Segev and A. Shoshani. Logical modeling of temporal data. Proc. of the ACM-Sigmod International Conf.
on Management of Data, 1987.

[10] A. P. Sistla and E. M. Clarke. Complexity of propositional linear temporal logics. Journal of the Association
for Computing Machinery, 32(3), July 1985.

[11] A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and querying moving objects. Thirteenth
International Conference on Data Engineering, April 1997.

[12] P. Sistla and O. Wolfson. Temporal triggers in active databases. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 7(3), June 1995.

[13] R. Snodgrass. The temporal query language tquel. ACM Trans. on Database Systems, 12(2), June 1987.

] R. Snodgrass and I. Ahn. The temporal databases. IEEE Computer, Sept. 1986.

[15] R. Snodgrass and ed. Special issue on temporal databases. Data Engineering, Dec. 1988.

] G. Voelker and B. Bershad. Mobisaic: An information system for a mobile wireless computing environment.
Workshop on Mobile Computing Systems and Applications, 1994.

