
Querying the Uncertain Position of Moving ObjectsA. Prasad Sistla� Ouri Wolfsony Sam Chamberlainz Son DaoxAbstractIn this paper we propose a data model for representing moving objects with uncertain positionsin database systems. It is called the Moving Objects Spatio-Temporal (MOST) data model. We alsopropose Future Temporal Logic (FTL) as the query language for the MOST model, and devise analgorithm for processing FTL queries in MOST.1 IntroductionExisting database management systems (DBMS's) are not well equipped to handle continuously changingdata, such as the position of moving objects. The reason for this is that in databases, data is assumed to beconstant unless it is explicitly modi�ed. For example, if the salary �eld is 30K, then this salary is assumedto hold (i.e. 30K is returned in response to queries) until explicitly updated. Thus, in order to representmoving objects (e.g. cars) in a database, and answer queries about their position (e.g., How far is the carwith license plate RWW860 from the nearest hospital?) the car's position has to be continuously updated.This is unsatisfactory since either the position is updated very frequently (which would impose a seriousperformance and wireless-bandwidth overhead), or, the answer to queries is outdated. Furthermore, it ispossible that due to disconnection, an object cannot continuously update its position.In this paper we propose to solve this problem by representing the position as a function of time; itchanges as time passes, even without an explicit update. So, for example, the position of a car is given asa function of its motion vector (e.g., north, at 60 miles/hour). In other words, we consider a higher level ofdata abstraction, where an object's motion vector (rather than its position) is represented as an attributeof the object. Obviously the motion vector of an object can change (thus it can be updated), but in mostcases it does so less frequently than the position of the object.We propose a data model called Moving Objects Spatio-Temporal (or MOST for short) for databaseswith dynamic attributes, i.e. attributes that change continuously as a function of time, without beingexplicitly updated. In other words, the answer to a query depends not only on the database contents,but also on the time at which the query is entered. Our model also allows for uncertainty in the valuesof dynamic attributes. Furthermore, we explain how to incorporate dynamic attributes in existing datamodels and what capabilities need to be added to existing query processing systems to deal with dynamicattributes.Clearly, our proposed model enables queries that refer to future values of dynamic attributes, namelyfuture queries. For example, consider an air-tra�c control application, and suppose that each object inthe database represents an aircraft and its position. Then the query Q = \retrieve all the airplanes thatwill come within 30 miles of the airport in the next 10 minutes" can be answered in our model. In [12] weintroduced a temporal query language called Future Temporal Logic (FTL). The language is more naturaland intuitive to use in formulating future queries such as Q. Unfortunately, due to the di�erence in datamodels, the algorithm developed in [12] for processing FTL queries does not work for MOST databases.Therefore, in this paper we develop an algorithm for processing an important subclass of FTL queries forMOST databases.�Department of Electrical Engineering and Computer Science, University of Illinois, Chicago, IL 60607yDepartment of Electrical Engineering and Computer Science, University of Illinois, Chicago, IL 60607 CESDIS, NASAGoddard Space Flight Center, Code 930.5, Greenbelt, MD 20771zArmy Research Laboratory, Aberdeen Proving Ground, MDxHughes Research Laboratories, Information Sciences Laboratory, Malibu, CA

The answer to future queries is usually tentative in the following sense. Suppose that the answer to theabove query Q contains airplane a. It is possible that after the answer is presented to the user, the motionvector of a changes in a way that steers a away from the airport, and the database is updated to re
ectthis change. Thus a does not come within 30 miles of the airport in the next 10 minutes. Therefore, inthis sense the answer to future queries is tentative, i.e. it should be regarded as correct according what iscurrently known about the real world, but this knowledge (e.g. the motion vector) can change.Continuous queries is another topic that requires new consideration in our model. For example, sup-pose that there is a relation MOTELS (that resides, for example, in a satellite) giving for each motelits geographic-coordinates, room-price, and availability. Consider a moving car issuing a query such as\Display motels (with availability and cost) within a radius of 5 miles", and suppose that the query iscontinuous, i.e., the car requests the answer to the query to be continuously updated. Observe that theanswer changes with the car movement. When and how often should the query be reevaluated? Our queryprocessing algorithm facilitates a single evaluation of the query; reevaluation has to occur only if the motionvector of the car changes.We provide two di�erent kinds of semantics| called may and must semantics respectively. Becauseof possible uncertainty in the values of dynamic attributes, these two di�erent semantics may producedi�erent results. For example, consider the query \Retrieve all air-planes with in 5 miles of airplane A".Under the \may" semantics, the answer is the set of all airplanes that are possibly with in 5 miles of A.Under the \must" semantics, this will be the set of all airplanes which are de�nitely with in 5 miles of A.These two values coincide if there is no uncertainty in the position of A.We assume that there is a natural, user-friendly way of entering into the database the current positionand motion vector of objects. For example, a point on a screen may represent the car's current position1,and the driver may draw around it, on the touch-sensitive screen, a circle with a radius of 5 miles; thens/he may name the circle C and indicate that C moves as a rigid body having the motion vector of thecar. This way the driver speci�es a circle and its motion vector, and the car's computer can create a datarepresentation of the moving object. The computer can automatically update the motion vector of C whenit senses a changes in speed or direction. In other applications, such as air-tra�c-control, there may beother means of entering objects and their motion vector.Generally, a query in our data model involves spatial objects (e.g. points, lines, regions, polygons) andtheir motion vector. Some examples of queries are: \Retrieve the objects that will intersect the polygon Pwithin 3 minutes", or, \Retrieve the objects that will intersect P within 3 minutes, and have the attributePRICE� 100", or, \Retrieve the objects that will intersect P within 3 minutes, and stay in P for 1 minute",or \Retrieve the objects that will intersect P within 3 minutes, stay in the polygon for 1 minute, and 5minutes later enter another polygon Q".We consider the problem of evaluating \may" queries for the case of moving objects. We show that,in general, this evaluation problem is computationally hard for the case when there is uncertainity andthe objects are moving freely in two dimensional space. For the case when the objects are moving on wellde�ned routes and when there is uncertainty in their speeds, we show that the evaluation problem of \may"queries, that use restricted FTL formulas, is e�ciently solvable; we do this by reducing this problem to theevaluation problem for the deterministic case, i.e. when there is no certainty. Finally, we give an e�cientalgorithm for evaluating queries in the deterministic case (for relational databases, this method translatesthe FTL formula in to a sequence of SQL queries).In summary, in this paper we introduce the MOST data model whose main contributions are as follows.� A new type of attributes called dynamic attributes. The principles for incorporating dynamic at-tributes on top of existing DBMS's are outlined.� Adaptation of FTL as a query language in MOST. Two di�erent semantics for queries, called \may"and \must" semantics, are provided.� An e�cient algorithm is devised for processing queries speci�ed in an important subclass of FTLwhen all dynamic variables are deterministic, i.e. when there is no uncertainty in their values at anyinstant of time.� E�cient algorithm for processing an important subclass of \may" queries when objects are travelingon well de�ned routes and when there is uncertainty in their speeds. This algorithm is obtained byreducing it to the deterministic case.1this position may be supplied, for example, by a Geographic Positioning System (GPS) on board the car.

� We show how the proposed algorithms can be implemented on top of an existing DBMS.The rest of this paper is organized as follows. In section 2 we introduce the MOST data model anddiscuss the types of queries it supports in terms of database histories. In section 3 we de�ne the FTL querylanguage, i.e. its syntax and semantics in the context of MOST; we also demonstrate the language usingexamples, and we introduce an algorithm for processing FTL queries. In section 4 we discuss a methodof indexing dynamic attributes. In section 5 we discuss several issues related to implementation of theMOST data model, including: MOST on top of existing DBMS's, queries issued by moving objects, anddistributed query processing. In section 6 we compare our work to relevant literature, and in section 7 wediscuss future work.2 The MOST data modelThe traditional database model is as follows. A database is a set of object-classes. A special databaseobject called time gives the current time at every instant; its domain is the set of natural numbers, and itsvalue increases by one in each clock tick. An object-class is a set of attributes. For example, MOTELS isan object class with attributes Name, Location, Number-of-rooms, Price-per-room, etc.Some object-classes are designated as spatial. A spatial object class has attribute POSITION denotingthe position of the object. Depending on the coordinate system one might be using, the POSITIONattribute may have sub-attributes POSITION.X, POSITION.Y and POSITION.Z denoting the x-,y- andz-coordinates of the object. The spatial object classes have a set of spatial methods associated withthem. Each such method takes spatial objects as arguments. Intuitively, these methods represent spatialrelationships among the objects at a certain point in time, and they return true or false, indicating whetheror not the relationship is satis�ed at the time. For example, INSIDE(o,P) and OUTSIDE(o,P) are spatialrelations. Each one of them takes as arguments a point-object o and a polygon-object P in a databasestate; and it indicates whether or not o is inside (outside) the polygon P in that state. Another exampleof a spatial relation is WITHIN-A-SPHERE(r, o1 , ... ,ok). Its �rst argument is a real number r, andits remaining arguments are point-objects in the database. WITHIN-A-SPHERE indicates whether or notthe point-objects can be enclosed within a sphere of radius r.There may also be methods that return an integer value. For example, the method DIST(o1; o2) takesas arguments two point-objects and returns the distance between the point-objects.To model moving objects, in subsection 2.1 we introduce the notion of a dynamic attribute, and insubsection 2.2 we relate it to the concept of a database history. In subsection 2.3 we discuss three di�erenttypes of queries that arise in this model.2.1 Dynamic attributesEach attribute of an object-class is either static or dynamic. Intuitively, a static attribute of an object is anattribute in the traditional sense, i.e. it changes only when ann explicit update of the database occurs; incontrast, a dynamic attribute changes over time according to some given function, even if it is not explicitlyupdated. For example, consider an object starting from the origin and moving along the x axis in twodimensional space at 50 to 60 miles per unit time. Then its position at any point in time is given by its xand y coordinates, where the value of its y-coordinate is a static attribute and has valuezero, and the valueof its x-coordinate is a dynamic attribute that changes with time. Its x-coordinate has value 1 some time inthe time interval between 160 and 150 units of time, has value 2 some time in the interval between 260 and 250 ,and so on (equivalently, after t units of time, the x-coordinate value of the object's position is somewherebetween 50t and 60t). We represent the values of a dynamic attribute at various times by a sequence ofvalue-time pairs of the form (u1; t1); :::; (ui; ti); (ui+1; ti+1); :::(un; tn) where t1 < t2 < ::: < ti < ti+1:::.Such a sequence indicates that, for each i such that 0 � i < n, the attribute has value ui during the rightopen interval [ti; ti+1), and has value un at time tn. Usually, t1; :::; tn denote the time instances when theattribute value changes implicitly. Note that, here we are assuming that the attribute takes discrete values.Formally, a dynamic attribute A is represented by three sub-attributes,A:initialvalue, A:updatetime, and A:function(denoted as A:f). Here A:f is a multi-valued functionwhich takes as argument a sequence of value-time pairs and returns a set of possible value-time pairs ofthe dynamic attribute. Intuitively, the returned value-time pairs denote the di�erent ways in which theinput sequence can be extended to denote values of the variable in future. At time A:updatetime the valueof A is given by A:initialvalue and its value until the next update is de�ned inductively as follows. Let

v = (u1; t1); :::; (un; tn) be a sequence of value-time pairs denoting the values of A up to time tn, whereu1 = A:initialvalue and t1 = A:updatetime, and let (un+1; tn+1) be any element in the set C returned byA:f on input v. Then, the sequence (u1; t1)::::; (un; tn); (un+1; tn+1) denotes a possible sequence of valuesof A up to time tn+1. Note that by extending v with di�erent elements from C we get di�erent extensions;these di�erent extensions may give di�erent values to A at the same time denoting the uncertainty in itsvalue.For any t � A:updatetime, we de�ne the set of possible values of A at time t as follows. Let(u1; t1); :::; (un; tn); (un+1; tn+1) be a sequence of value-time pairs generated inductively as de�ned abovesuch that tn � t < tn+1. Then un is a possible value of A at time t. The set of all possible values of Aat time t is de�ned by considering all possible such sequences. Thus, we see that the possible values at afuture time is de�ned inductively as function of its values at previous times. The need for such a de�nitionwill be be clear when we de�ne database histories in the next subsection. Also, it is to be noted that theuncertainty in the possible value of a dynamic attribute is indicated by the fact that A:f returns a set ofvalues.As an example, let o:POSITION:X be the dynamic variable denoting the x-coordinate of an object omoving in the direction of the x-axis at a speed ranging between the values l and h. Let u be a sequenceof value-time pairs ending with (un; tn). Then the function o:POSITION:X:f , on input u, will outputthe set of values f(un + 1; tn + �) : 1h � � � 1l g denoting that the x-coordinate increases by 1 at any timebetween 1h and 1l time units after tn.A dynamic variable A is called deterministic if the set of values returned by A:f is a singleton set. Anexplicit update of a dynamic attribute may change any of its sub-attributes, except for A:updatetime.There are two possible interpretations of A:updatetime, corresponding to valid-time and transaction-time (see [14]). In the �rst interpretation, it is the time at which the update occurred in the real worldsystem being modeled, e.g. the time at which the vehicle changed its motion vector. In this case, alongwith the update, the sensor has to send to the database A:updatetime. In the second interpretation,A:updatetime, is simply the time-stamp when the update was committed by the DBMS. In this paper weassume that the database is updated instantaneously, i.e. the valid-time and transaction-time are equal.When a dynamic attribute is queried, the answer returned by the DBMS gives the range of possiblevalues of the attribute at the time the query is entered. In this sense, our model is di�erent than existingdatabase systems, since, unless an attribute has been explicitly updated, a DBMS returns the same valuefor the attribute, independently of the time at which the query is posed. So, for example, in our model theanswer to the query: \retrieve the possible current x-positions of object o" depends on the value of thedynamic attribute o:POSITION:X at the time at which the query is posed. In other words, the answermay be di�erent for time-points t1 and t2, even though the database has not been explicitly updatedbetween these two time-points.In this paper we are concerned with dynamic attributes that represent spatial coordinates, but the modelcan be used for other hybrid systems, in which dynamic attributes represent, for example, temperature, orfuel consumption.2.2 Database historiesIn existing database systems, queries refer to the current database state, i.e. the state existing at the timethe query is entered. For example, the query can request the current price of a stock, or the current positionof an object, but not future ones. Consequently, existing query languages are nontemporal, i.e. limited toaccessing a single (i.e. the current) database state. In our model, the database implicitly represents futurestates of the system being modeled (e.g. future positions of moving objects), therefore we can envisionqueries pertaining to the future, rather than the current state of the system being modeled. For example,a moving car may request all the motels that it may reach (i.e. come within 500 yards of) in the next 20minutes. To interpret this type of queries, i.e. queries referring to dynamic attributes, we need the notionof a database history.We assume that there is a special variable called time stamp. A database state is a mapping thatassociates a set of objects of the appropriate type to each object class and a time value to the time stampvariable. The value of the time stamp variable in a database state gives the time when that database statewas created, i.e. the update that created the database state. In any database state, the value of a dynamicattribute A is given by the values of its three sub-attributes A:initialvalue, A:updatetime and A:f . Forany object o, we let o:A denote the attribute A of o; if A has a sub-attribute B then we let o:A:B denotethe value of the sub-attribute. We denote the value of the attribute A of an object o in a state s by s(o:A).

Let s be a database state, and t be any time value greater than or equal to s(time stamp). A possibledatabase state s0 corresponding to s at time t is a mapping that associates a set of objects of the appropriatetype to each object class and the value t with the variable time stamp satisfying the following properties:for each object class C the set of objects assigned by s0 to C is same as the set of objects assigned by s;for each object o present in s the value of an attribute A of o in s0 is de�ned as follows; if A is a staticattribute then s0(o:A) = s(o:A); if A is a dynamic attribute then s0 treats A as atomic and assigns it avalue s0(o:A) which belongs to the set of possible values of A as de�ned in the previous subsection. Fora database state s, and any time t � s(time stamp), there can be more than one possible database statecorresponding to s at time t. However, if all the dynamic attributes are deterministic, i.e. no uncertainty,then there can only be one possible database state corresponding to s at time t.A trace is a �nite sequence s0; ::; si; :::; sn of database states such that for every i > 0, si(time stamp) >si�1(time stamp), i.e. the values of the time stamp are strictly increasing. For any i > 0, we say that theattribute A of object o is updated in the state si if o is present in both si and si�1 and si�1(o:A) 6= si(o:A).We say that object o is created in state si if o is present in si but not in si�1. If o is created in si then forevery dynamic attribute A of o, si(o:A:updatetime) = si(time stamp). Similarly, if a dynamic attributeA of an object o is updated in state si, then si(o:A:updatetime) = si(time stamp).Let � = (s0; :::; si; :::sn) be a trace. A possible database history h (brie
y, a database history) corre-sponding to � is an in�nite sequence v0; v1; :::; vj ; ::: of possible database states such that the followingproperties are satis�ed: (i) for all j > 0, vj(time stamp) > vj�1(time stamp), and vj(time stamp)increases unboundedly with j; (ii) for every i such that 0 � i � n, there exists an k such thatsi(time stamp) = vk(time stamp); (iii) for each j � 0, vj is a possible database state correspondingto si where i is the maximum integer such that 0 � i � n and si(time stamp) � vj(time stamp).Note that, in a history, the value of time stamp is monotonically increasing; usually, we assume thatthese time values denote the instances when the state changes either due to an explicit update, or due toimplicit change in the value of a dynamic attribute.There can be many possible database histories corresponding to a trace. However, if all the dynamicvariables are deterministic then there is only one history corresponding to a trace.Consider the example of an object o moving in the x-direction with a speed ranging between 50 and60 miles per unit time starting with the x-coordinate equals 0 at time 0. Assume that its x-coordinate isrepresented by the dynamic attribute o:POSITION:X . We assume that the x and y coordinates are integervalues. The database trace corresponding to this example has only one element consisting of the initial state.Now consider any sequence of possible database states v0; v1; :::; vi; :::. Then v0(o:POSITION:X) = 0,and for any i > 0, vi(o:POSITION:X) = i and vi�1(time stamp) + � where � is any value between 160and 150 . Here the lowest value and highest values of � correspond to the cases when the object moves atmaximum and minimum speeds respectively.Consider a database trace denoting the various updates on a given database up to the current time t.Let h be a database history corresponding to this trace. The �nite sequence consisting of possible databasestates in h with a lower time-stamp than t is called the past database-history, and the ini�nite sequenceconsisting of all possible states in h with a time-stamp higher than the current time t is called the futuredatabase-history. Each state in the future history is identical to the state at time t, except possibly for thevalues of the dynamic attributes.We would like to emphasize at this point that the database history is an abstract concept, introducedsolely for providing formal semantics to our temporal query language, FTL. We do not maintain store thedatabase history any where.2.3 Object PositionsAs indicated earlier, we assume that we have a database denoting information about spatial and otherobjects. The class of spatial objects has a subclass of moving objects. There may be other subclasses ofspatial objects such as polygons etc. All the moving objects are assumed to be point objects, and theyhave a dynamic attribute called POSITION. If a moving object is moving in 2-dimensional space thenwe assume that it has sub-attributes POSITION.X and POSITION.Y each of which itself is a dynamicattribute (similarly, objects moving in 3-dimensional space will have three sub-attributes). On the otherhand, objects may be moving on well de�ned routes (such as high ways etc.) and in that case, the positionof the object is given by its distance when measured from a �xed point on the route in a particular direction;this distance will be considered as a dynamic attribute.Although we have used a general multi-valued function to represent the values of a dynamic attribute,

one can use one of the following two schemes for representing positions of moving objects. In the �rstscheme, for an object moving on a well de�ned route, we specify the motion of the object by two numbersdenoting the upper and lower bounds on the speed; for an object moving freely in the two dimensionalspace, its motion is speci�ed by giving the speed bounds in the X and Y directions. In the second scheme,for an object moving on a route, we specify its distance, from the initial position, by two functions of timethat give upper and lower bounds on the distance at any future time; for an object moving freely in twodimensional space, we use pairs of functions for each of the X,Y directions.2.4 Three types of MOST queriesA query is a function which takes as input a database trace and a time value, and outputs a set of values.In our query language, the user can use temporal operators and can refer to the current as well as futurepossible database states. We de�ne the semantics of a query by referring to the possible histories of thedatabase. We de�ne two di�erent kinds of semantics of a query, called may and must semantics. In ourmodel, we distinguish between three types of queries; instantaneous, continuous and persistent. The samequery may be entered as instantaneous, continuous and persistent, producing di�erent results in each case.These types di�er depending on the histories on which the query is evaluated, and on the time when theyare evaluated (in contrast, in traditional databases the situation is simpler). For each of these types ofqueries, we may use either of the two semantics. Which of the semantics to be used can be explicitlyspeci�ed by the user or the query processor may retrieve answers under the both the semantics and outputboth the answers. An instantaneous query is a function of the set of current possible database states, anda continuous query is an instantaneous query evaluated continuously at each instance in the future.Formally, the value of an instantaneous query at time t is de�ned using the set of possible historiesstarting at t, i.e. the time when the query is entered. As indicated earlier, the value depends upon the kindof semantics used, may or must semantics. t is usually the time when the query is entered. For example,the query Q = \Display the motels within 5 miles of all the current possible positions of vehicle x", whenconsidered as an instantaneous query returns a set of motels, presented to the user immediately after thequery is evaluated. Since there may be an uncertainty in the current position, the set of motels returneddepends upon the kind of semantics used. Under the \may" semantics the result is the set of motels within 5 miles of any possible current position. Under the \must" semantics the result is the set of motelswhich are with in 5 miles of every possible current position.Observe that an instantaneous query may refer to all possible future histories. For example, \Displaythe motels that I reach within 3 minutes" refers to all the histories, and within each history it refers tostates with a time-stamp between now and three minutes later. Under \may" semantics it will output theset of of motels reached in three minutes in any of the possible future histories; under \must" semantics itwill output the set of motels that will be reached in three minutes in every possible future history.Obviously, since an instantaneous query is evaluated on an in�nite history, its answer may be in�nite.For example, the query: \Display the tuples (motel,reaching-time) representing the motels that I will reach,and the time when I will do so" may have an in�nite answer. To cope with this situation we will assumein this paper that an instantaneous query pertains to a prede�ned (but very large) �xed amount of time.There are other ways of dealing with this problem (they involve a �nite representation of in�nite sets), butthese are beyond the scope of this paper.To motivate the second type of query, assume that a satisfactory motel is not found as a result of theinstantaneous query Q, since, for example, the price is too high for the value. However, the answer toQ changes as the car moves, even if the database is not updated. Thus, the traveler may wish to makethe query continuous, i.e. request the system to regard it as an instantaneous query being continuouslyreissued at each clock tick (while the car is moving), until cancelled (e.g. until a satisfactory motel isfound). Formally, a continuous query at time t is a sequence of instantaneous queries, one for each pointin time t0 > t (i.e. the query is considered on the in�nite history starting at time t0). If the answer toa continuous query is presented to the user on a screen, the display may change over time, even if thedatabase is not updated.Clearly, continuously evaluating a query would be very ine�cient. Rather, when a continuous queryis entered our processing algorithm evaluates the query once, and returns a set of tuples. Each tupleconsists of an instantiation � of the predicate's variables (i.e. an answer to the query when considered inthe noncontinuous sense) and a time interval begin to end. The tuple (�; begin; end) indicates that � is inthe answer of the instantaneous queries from time begin until the time end. The set of tuples produced inresponse to a continuous query CQ is called Answer(CQ).

Obviously, an explicit update of the database may change a tuple in Answer(CQ). For example,it is possible that the query evaluation algorithm produces the tuple (o; 5; 7), indicating that o satis�esthe query between times 5 and 7. If the speed of the object o is updated before time 5, the tuple mayneed to be replaced by, say (o; 6; 7), or it may need to be deleted. Therefore, a continuous query CQhas to be reevaluated when an update occurs that may change the set of tuples Answer(CQ). In thissense Answer(CQ) is a materialized view. However, a continuous query in our model is di�erent than amaterialized view, since the answer to a continuous query may change over time even if the database isnot updated.Finally, the third type of query is a persistent query. Formally, a persistent query at time t is de�nedas a sequence of instantaneous queries at each future time t0 � t, where the instantaneous query at t0has two arguments (i) the database trace as of t0 and (ii) the time value t; note that the semantics ofthis instantaneous query is de�ned using the possible histories with respect to the database trace at t0.Observe that, in contrast to a continuous query, the di�erent instantaneous queries comprising a persistentquery have the same starting point in the possible histories. These histories may di�er for the di�erentinstantaneous queries due to database updates executed after time t.To realize the need for persistence, consider the query R = \retrieve the objects whose speed in thedirection of the X-axis doubles within 10 minutes". Suppose that the query is entered as persistent attime 0. Assume that for some object o, at time 0 the value of the dynamic attribute POSITION.X changesaccording to the function 5t (recall, t is time, i.e. the speed is 5). At time 0 no objects will be retrieved,since for each object, the speed is identical in all future database states; only the location changes fromstate to state. Suppose further that after one minute the function is explicitly updated to 7t, and afteranother minute it is explicitly updated to 10t. Then, the speed in the X direction has changed from 5 attime 0 to 10 at time 2, and hence, at time 2 object o should be retrieved as an answer to R. But if weconsider the query R as instantaneous or continuous o will never be retrieved, since starting at any pointin time, the speed of o is identical in all states of the future database history. When entered as persistent,the query R is considered as a sequence of instantaneous queries, all operating on the history that startsat time 0. At time 2 this history re
ects a change of the speed from 2 to 4 within two minutes, thus o willbe retrieved at that time.In summary, the three types of queries are illustrated in the following �gure.database history -t
 �� -HFigure 1: database history(a) An instantaneous query at time t is de�ned with respect to the set of possible future histories Ht (i.e.the future history beginning at t).(b) A continuous query at time t is a sequence of instantaneous queries at each time t0 � t.(c) A persistent query at time t is a sequence of instantaneous queries, all at time t. The queries areevaluated at each time t0 � t when the database is updated.In contrast to continuous queries, the evaluation of persistent queries requires saving of informationabout the way the database is updated over time, and we postpone the subject of persistent query evaluationto future research. Observe that persistent queries are relevant even in the absence of dynamic variables.In [12] we developed an algorithm for processing FTL persistent queries. Unfortunately, that algorithmdoes not work when the queries involve dynamic variables.Observe that continuous and persistent queries can be used to de�ne temporal triggers. Such a triggeris simply one of these two types of queries, coupled with an action and possibly an event.3 The FTL languageIn this section we �rst motivate the need for our language (subsection 3.1), then we present the syntax(3.2) and semantics (3.3) of FTL. In subsection 3.4 we demonstrate the language through some example,and in subsection 3.6 we present our query processing algorithm.

3.1 MotivationA regular query language such as SQL or OQL can be used for expressing temporal queries on movingobjects, however, this would be cumbersome. The reason is that these languages do not have temporaloperators, i.e. keywords that are natural and intuitive in the temporal domain. Consider for example thequery Q: \Retrieve the pairs of objects o and n such that the distance between o and n stays within 5miles until they both enter polygon P".Assume that for each predicate G there are functions begin time(G) and end time(G) that give thebeginning and ending times of the �rst time-interval during which G is satis�ed; also assume that \now"denotes the current time. Then the query Q would be expressed as follows.RETRIEVE o,nFROM Moving-ObjectsWHERE begin time(DIST (o; n) � 5) � nowand end time(DIST (o; n) � 5) �begin time(INSIDE(o; P)) ^ INSIDE(n; P)).At the end section 3.2 we show how the query Q is expressed in our proposed language, FTL. Clearly,the query in FTL is simpler and more intuitive. The SQL and OQL queries may be even more complexwhen considering the fact that the spatial predicates may be satis�ed for more than one time interval.Thus, we may need the functions begin time1 and end time1 to denote the beginning and ending times ofthe �rst time interval, begin time2 and end time2 to denote the beginning and ending of the second timeinterval, etc.3.2 SyntaxThe FTL query language enables queries pertaining to the future states of the system being modeled.Since the language and system are designed to be installed on top of an existing DBMS, the FTL languageassumes an underlying nontemporal query language provided by the DBMS. However, the FTL languageis not dependent on a speci�c underlying query language, or, in other words, can be installed on top of anyDBMS. This installation is discussed in section 4.1.The formulas (i.e. queries) of FTL use two basic future temporal operators Until and Nexttime . Othertemporal operators, such as Eventually , can be expressed in terms of the basic operators. The symbolsof the logic include various type names, such as relations, integers, etc. These denote the di�erent typesof object classes and constants in the database. We assume that, for each n � 0, we have a set of n-aryfunction symbols and a set of n-ary relation symbols. Each n-ary function symbol denotes a function thattakes n-arguments of particular types, and returns a value. For example, + and * are function symbolsdenoting addition and multiplication on the integer type. Similarly, �;� are binary relation symbolsdenoting arithmetic comparison operators. The functions symbols are also used to denote atomic queries,i.e. queries in the underlying nontemporal query language (e.g. OQL). We assume that all atomic queriesretrieve single values. For example, the function \RETRIEVE (o.height) WHERE o.id = 100" denotes thequery that retrieves the height of an object whose id is 100. Atomic queries can have variables appearingin them. For example, \RETRIEVE (o.height) WHERE o.id = y" has the variable y appearing free in it;for a given value to the variable y, it retrieves the height of the object whose id is given by y.Functions of arity zero denote constants and relations of arity zero denote propositions.The formulas of the logic are formed using the function and relation symbols, the object classesand variables, the logical symbols :;^, the assignment quanti�er , square brackets [;] and the temporalmodal operators Until and Nexttime. In our logic, the assignment is the only quanti�er. It binds a variableto the result of a query in one of the database states of the history. One of the advantages of using thisquanti�er rather than the First Order Logic (FOL) quanti�ers is that the problems of safety are avoided.This problem is more severe when database histories (rather than database states) are involved. Also,the full power of FOL is unnecessary for the sequence of database states in the history. The assignmentquanti�er allows us to capture the database atomic query values at some point in time and relate them toatomic query values at later points in time.A term is a variable or the application of a function to other terms. For example, time+ 10 is a term;if x; y are variables and f is a binary function, then f(x; y) is a term; the query \RETRIEVE o.heightWHERE o.id = y" speci�ed above is also a term. Well formed formulas of the logic are de�ned as follows.If t1; :::; tn are terms of appropriate type, and R is an n-ary relational symbol, then R(t1; :::; tn) is a wellformed formula. If f and g are well formed formulas, then :f , f ^ g, f Until g, Nexttime f and ([x t]f)

are also well formed formulas, where x is a variable and t is a term of the same type as x and may containfree variables; such a term t may represent a query on the database. A variable x appearing in a formulais free if it is not in the scope of an assignment quanti�er of the form [x t].In our system, a query is speci�ed by the following syntax:RETRIEVE <target-list> WHERE <semantic-spec> <condition>.Here <condition> is an FTL formula in which all the free variables are object variables. The speci�cation<target-list> is a list of attributes of all object variables appearing free in the condition part. The clause<semantic-spec> can be one of the two key words may or must, and it speci�es the semantics to be usedin processing the query. We call a query to be a \may" query if its semantic clause is the key word \may",otherwise the query is called a \must" query.For example, the following query retrieves the pairs of objects o and n such that, on all future histories,the distance between o and n stays within 5 miles until they both enter polygon P (the FTL formula isthe argument of the WHERE clause) in all possible future histories:RETRIEVE o,nWHERE must DIST (o; n) � 5Until (INSIDE(o; P)) ^ INSIDE(n; P)3.3 SemanticsIntuitively, the semantics are speci�ed in the following context. Let s0 be the state of the database whena query f is entered. The formula f is evaluated on the history starting with s0.We de�ne the formal semantics of our logic as follows. We assume that each type used in the logicis associated with a domain, and all the objects of that type take values from that domain. We assumea standard interpretation for all the function and relation symbols used in the logic. For example, �denotes the standard less-than-or-equal-to relation, and + denotes the standard addition on integers. Wewill de�ne the satisfaction of a formula at a state on a history with respect to an evaluation, where anevaluation is a mapping that associates a value with each variable. For example, consider the formula[x RETRIEV E(o)] Nexttime RETRIEV E(o) 6= x, that is satis�ed when the value of some attributeof o di�ers in two consecutive database states. The satisfaction of the subformula RETRIEV E(o) 6= xdepends on the result of the atomic query that retrieves o from the current database, as well as on thevalue of the variable x. The value associated with x by an evaluation is the value of o in the previousdatabase state.The de�nition of the semantics proceeds inductively on the structure of the formula. If the formulacontains no temporal operators and no assignment (to the variables) quanti�ers, then its satisfaction at astate of the history depends exclusively on the values of the database variables in that state and on theevaluation. A formula of the form f Until g is satis�ed at a state with respect to an evaluation �, if and onlyif one of the following two cases holds: either g is satis�ed at that state, or there exists a future state in thehistory where g is satis�ed and until then f continues to be satis�ed. A formula of the form Nexttime fis satis�ed at a state with respect to an evaluation, if and only if the formula f is satis�ed at the nextstate of the history with respect to the same evaluation. A formula of the form [x t]f is satis�ed at astate with respect to an evaluation, if and only if the formula f is satis�ed at the same state with respectto a new evaluation that assigns the value of the term t to x and keeps the values of the other variablesunchanged. A formula of the form f ^ g is satis�ed if and only if both f and g are satis�ed at the samestate; a formula of the form :f is satis�ed at a state if and only if f is not satis�ed at that state.In our formulas we use the additional propositional connectives _ (disjunction),) (logical impli-cation) all of which can be de�ned using : and ^. We will also use the additional temporal operatorsEventually and Always which are de�ned as follows. The temporal operator Eventually f asserts that fis satis�ed at some future state, and it can be de�ned as true Until f . Actually, in our context a moreintuitive notation is often later f , but we will use the traditional Eventually f . The temporal operatorAlways f asserts that f is satis�ed at all future states, including the present state, and it can be de�ned as: Eventually :f . We would like to emphasize that, although the above context implies that f is evaluatedat each database state, our processing algorithm avoids this overhead.Let Q be an instantaneous query speci�ed at time t using the syntax given at the end of the lastsubsection. Let the FTL formula f denote the condition part of Q, and let T denote the target list of Q.We de�ne the semantics based on the <semantic-spec> clause in Q. Let � be the database trace denotingthe sequence of updates up to t. Let H be the set of all possible future database histories correspondingto � as of now, i.e. as of time t. For any h 2 H , let Fh be the set of all evaluations � to the free variables

in f such that f is satis�ed at the beginning of h with respect to the evaluation �. Let Rh denote the setof all tuples t obtained by applying some evaluation in Fh to the target list T , i.e. Rh = f�(T) : � 2 Fhg.Let May Answer(Q) = Sh2Fh Rh and Must Answer(Q) = Th2Fh Rh. If Q is a \may" query, then wede�ne the semantics of Q, i.e. the answer to Q, to be May Answer(Q), and if Q is a \must" query itssemantics is de�ned to be Must Answer(Q). Thus, it is easy to see that the answer computed for the\may" query indicates possibility with respect to at least one of the future possible histories, while theanswer computed with for a \must" query denotes de�niteness of the result. Both these answers coincidewhen all the dynamic attributes are deterministic, i.e. H contains a single history.3.4 ExamplesIn this subsection, we show how to express some queries in FTL. For expressive convenience, we also intro-duce the following real-time (i.e. bounded) temporal operators. These operators can be expressed using thepreviously de�ned temporal operators and the time object. (see [12]). Eventually within c (g) assertsthat the formula g will be satis�ed within c time units from the current position. Eventually after c (g)asserts that g holds after at least c units of time. Always for c (g) asserts that the formula holds con-tinuously for the next c units of time. The formula (g until within c h) asserts that there exists a futureinstance within c units of time where h holds, and until then g continues to be satis�ed.The following query retrieves all the objects o of type \civilian" that may enter a restricted area Pwithin three units of time from the current instance.(I) RETRIEVE oWHERE may (o:type ="civilian" ^ P:type = "restricted"^Eventually within c INSIDE(o; P))The following query retrieves all the civilian objects o that de�nitely (i.e. must) enter a restricted areaP within three units of time, and stay in P for another 2 units of time.(II) RETRIEVE oWHERE must (o:type ="civilian" ^ P:type ="restricted"^Eventually within 3 (INSIDE(o; P)^Always for 2 INSIDE(o; P)))The following query retrieves all the objects o that may enter the polygon P within three units of time,stay in P for two units of time, and after at least �ve units of time enter another polygon Q.(III) RETRIEVE oWHERE may (Eventually within 3[(INSIDE(o; P)^Always for 2(INSIDE(o; P))^Eventually after 5INSIDE(o;Q)])3.5 Algorithm for evaluation of MOST queriesEarlier in subsection 2.3, we have indicated two di�erent ways for representing the positions of movingobjects. In the reminder of this paper, we use the �rst of these schemes. For an object o moving on aroute, we assume that o:ubs and o:lbs, respectively, denote the upper and lower bounds on the speed ofthe object and that these bounds are positive ; we also assume that the attribute o:route gives the identityof the route on which the object is traveling. We say that an object o is moving freely in 2-dimensionalspace if its velocities in the x and y directions are independent. For such an object o, we let o:X:ubs ando:X:lbs denote the upper and lower bound speeds in the direction of the x-axis, and o:Y:ubs and o:Y:lbsrepresent the corresponding speeds in the direction of the y-axis; each of these speeds can be positive ornegative. (Note that for an object that moves on a route, the direction of its motion is determined by theroute and its speed will give its state of motion at that point; on other hand for an object moving freely in2-dimensional space we need to know its speeds in both the x and y directions). For a moving object, anyof the above sub-attributes can be explicitly updated.

In this subsection, we consider the problem of evaluating queries in the MOST model. An FTL formulaf is said to be a restricted conjunctive formula, if it has no negations appearing in it, the only temporaloperators appearing in it are until, until within c and Eventually within c, and the time stamp orthe time variable does not appear in it; the last condition implies that for every query q that appearson the right hand side of an assignment in f (i.e. as in [x q]) the value returned by q at any time isindependent of the time when it is evaluated and is only a function of the values to the free variables inq and the current positions of the objects. This condition also ensures that satisfaction of a non-temporalpredicate when an object is at a particular position depends only on the position of the object but not thetime when it reached the position. Also, note that f does not contain the nexttime operator.The following theorem shows that the problem of evaluating a \may" query whose condition part isa conjunctive FTL formula is PSPACE-hard when the objects are moving freely in 2-dimensional space.This theorem is proved by exhibiting a straightforward reduction from the model-checking problem forconjunctive formulas which is a known PSPACE-hard problem [10].THEOREM 1: Given a MOST database D modeling objects moving freely in 2-dimensional space,and given a \may" query whose condition part is given by a conjunctive FTL formula containing one freemoving object variable, the problem of evaluating the query is a PSPACE-hard problem. 2Now, we consider the problem of evaluating \may" queries where the objects are moving on routes.Consider a query Q whose condition part is given by a conjunctive formula f with one free moving objectvariable o. Now consider an object, say o1, whose speed is in the range [l; u]. There are many possiblehistories corresponding to the varying speeds of o1. Let h be the possible history corresponding to thecase where the object moves with the highest speed u at all times. Intuitively, it seems to be the casethat if there is a possible history h0 such that h0 satis�es f at the �rst state with respect to the evaluationwhere the variable o is assigned object o1, then f is also satis�ed at the beginning of h with respect to thesame evaluation. This is due to the following properties: (a) in both the histories object o1 goes throughthe same positions (possibly at di�erent times), (b) all the time bounds in the formula f are only upperbounds, and if these bounds are met when the object is moving at a lower speed then they will de�nitelybe met when the object is moving at a higher speed, and (c) time does not appear any where else in theformula; this ensures that satisfaction of a non-temporal predicate at a particular time only depends onthe position of the object but not the time when it reached the position.Now, we have the following theorem.THEOREM 2: Let f be a conjunctive FTL formula with one free object variable o ranging over movingobjects, o1 be an object moving on a route with speed in the range [l; u], � be an evaluation in which o ismapped to the object o1, and h be a history in which o1 is moving with the maximum speed u. Then, f issatis�ed at the beginning of some possible history with respect to the evaluation � i� it is satis�ed at thebeginning of h with respect to �.Proof: Let h0 be any possible history that satis�es f at the beginning with respect to the evaluation�. For each i � 0, let si and ti denote the ith states in h and h0 respectively. Since, in a history a newstate is added whenever the position of any object changes, it is the case that the distance of any object insuccessive states of a history either remains unchanged or changes by 1. Hence, we can divide a history into a sequence of sub-sequences B0; B1; :::; Bi; ::: of successive states such that ,for each i � 0, the distanceof object o1 in any two states of Bi is same, and its distance in a state in Bi di�ers from a state in Bi+1 by1. Let B0; B1; :::Bi; ::: be the sequence of sub-sequences corresponding to h; similarly, let C0; C1; :::; Ci; :::be such a sequence corresponding to h0. Since, in both the histories o1 starts from the same initial position,it is the case that for each i � 0, the distance of o1 in any state in Bi equals its distance in any state inCi. For each i � 0, we say that every state in Bi corresponds to every state in Ci and vice versa. Let g bea subformula of f . Now, by a simple induction on the length of g, we show that(*) If g is satis�ed at ti in h0 and sj is any state in h that corresponds to ti then g is also satis�ed at sj inh0.The proof is as follows. If g is an atomic formula then (*) holds because the satisfaction of g, with respect toan evaluation, only depends on the position of object o1, and it is independent of the time. The non-trivialcase in the induction is when g is of the form g1until within c g2 where c is a positive constant. Assumethat g is satis�ed at ti in h0. This implies that there exists some i0 � i such that g2 is satis�ed at ti0 ,and for all k, i � k < i0, g1 is satis�ed at tk; further more, the di�erence in the value of the time stampvariable in the states ti0 and ti is bounded by c. Clearly, there is a state sj0 in h that appears after si andthat corresponds to ti0 ; furthermore, every state appearing between sj and sj0 corresponds to some stateappearing between ti and ti0 . By induction, we see that g2 is satis�ed at sj0 , and g1 is satis�ed at sj andat all states appearing after sj but before sj0 . Also, the distance traversed by o1 from state sj to sj0 is

same as that between ti and ti0 . Since, in history h, o1 is traveling at a higher speed, it is the case thatdi�erence in the values of time stamp in state sj0 and sj is smaller than between ti0 and ti. From all this,we see that the formula g1until within c g2 is also satis�ed at state sj in h. The other cases in the proofare straightforward. 2Theorem 2 shows that, in order to answer the \may" queries whose condition part is a restricted con-junctive formula with a single free variable that ranges over moving objects, it is enough if we consider thesingle history where the objects are moving at the maximum speed. This corresponds to the deterministiccase.In the reminder of this section we present an algorithm for evaluating FTL queries for the case when theobjects are moving at constant speeds on di�erent routes. Our algorithm works for class of queries givenby conjunctive formulas, and for the case when all the dynamic variables are deterministic. A conjunctiveformula is an FTL formula without negation and without the nexttime operator and without any referenceto the time stamp variable. Even though conjunctive formulas can not explicitly refer to the time stampvariable, one can express real-time properties using the real time temporal operators. Note that the classof conjunctive formulas is superset of the class of restricted conjunctive formulas.In practice, most queries are indeed expressed by conjunctive queries. For instance, all the examplequeries we use in this paper are such. One of the main reasons for the restriction to conjunctive formulasis safety (i.e. �niteness of the result); negation may introduce in�nite answers. The handling of negationcan be incorporated in the algorithm, but this is beyond the scope of this paper. An additional restrictionof the algorithm is that it works only for continuous and instantaneous queries (i.e. not for persistentqueries).For a query CQ speci�ed by the formula f with free variables (x1; :::; xk) the algorithm returns a relationcalled Answer(CQ) (this relation was originally discussed in subsection 2.4), having k+2 attributes. The�rst k attributes give an instantiation � to the variables, and the last two attributes give a time intervalduring which the instantiation � satis�es the formula.The system uses this relation to answer continuous and instantaneous queries as follows. For a con-tinuous query CQ, the system presents to the user at each clock-tick t, the instantiations of the tupleshaving an interval that contains t. So, for example, if Answer(CQ) consists of the tuples (2, 10,15), and(5, 12,14), then the system displays the object with id = 2 between clock ticks 10 and 15, and betweenclock-ticks 12 and 14 it also displays the object with id = 5.For an instantaneous query, the system presents to the user the instantiations of the tuples having aninterval that contains the current clock-tick.The FTL query processing algorithmLet f(x1; x2; :::; xk) be a conjunctive FTL formula with free variables x1; x2; :::; xk such that the variabletime stamp is also not referenced in it. We assume that the system has a set of objects O. Some of theseobjects are stationary and the others are mobile. The positions (i.e. the X , Y and Z coordinates) of thestationary objects are assumed to be �xed, while the positions of the mobile objects are assumed to bedynamic variables. Without loss of generality we assume that the time when we are evaluating the queryis zero. The current database state re
ects the positions of objects as of this time, and furthermore, weassume that for each dynamic variable we have functions denoting how these variables change over time.As a consequence, the values of static variables at any time is the same as their value at time zero, andthe values of dynamic variables at any time in the future are given by the functions which are stored inthe database. Thus, the future history of the database is implicitly de�ned.For each subformula g of f (including f itself), our algorithm computes a relation Rg . Let g(x1; :::; xk)be a subformula containing free variables x1; :::; xk. The relation Rg will have (k + 2) attributes; the �rstk attributes correspond to the k variables; the last two attributes in each tuple specify the beginning andending of a time interval; we call this as the interval of the tuple. Each tuple in Rg denotes an instantiation� of values to the free variables in g and an interval I (speci�ed by the last two columns) during which theformula g is satis�ed with respect to �.The algorithm computes Rg , inductively, for each subformula g in increasing lengths of the subformula.To do this it executes a sequence of one or more SQL queries whose result will be the desired relation Rg.We only describe how to generate these SQL queries. After the termination of the algorithm, we will havethe relation Rf corresponding to the original formula f .The base case in our algorithm is when g is an atomic predicate R(x1; :::; xk) such as a spatial relationetc. In this case, we assume that there is a routine, which for each possible relevant instantiation of valuesto the free variables in g, gives us the intervals during which the relation R is satis�ed. Clearly, this

algorithm has to use the initial positions and functions according to which the dynamic variables change.For example, if R is the predicate DIST (x1; x2) � 5, then the algorithm gives, for each relevant object pairo1; o2, the time intervals during which the distance between them is � 5 (for this example, if we assumethat all objects are point objects, and that x1 ranges over moving objects, and x2 ranges over stationaryobjects, and that we have a relational database containing information about the the routes and speeds ofmoving objects and about the positions of statinary objects on the routes, then we can write an SQL querythat computes a relation denoting the the ids of objects and the time intervals during which the predicateR is satis�ed). We assume that the relation given by the atomic predicates are all �nite. For cases wherethese relations are in�nite in size, we need to use some �nite representations for them and work with theserepresentations; this is beyond the scope of this paper and will be discussed in a later paper.For the case when g is not an atomic predicate, we compute the relation Rg inductively based on theouter most connective of g as given below.� Let g = g1 ^ g2. In this case, let R1; R2 be the relations computed for g1 and g2 respectively, i.eRi = Rgi for i = 1; 2. For a given instantiation �, if g1 is satis�ed during interval I1 and g2 is satis�edduring I2 then g is satis�ed during the interval I1 \ I2. The relation R for g is computed by joiningthe relationships R1 and R2 as follows: the join condition is that common variable attributes shouldbe equal and the interval attributes should intersect; the retrieved tuple copies all the variable values,and the interval in the tuple will be the intersection of the of the intervals of the joining tuples. It isfaily easy to see how we can write a single SQL query that computes Rg from Rg1 and Rg2 .� Let g = g1 Until g2, and let R1 and R2 be the relations corresponding to g1 and g2 respectively. Letp+2; q+2 be the number of columns in R1 and R2 respectively. First, we compute another relation Sfrom R1 as follows. We de�ne a chain in R1 to be a set T of tuples in R1 that give same values to the�rst p columns and such that the following property is satis�ed: if l denotes the lowest value of theleft end points of all intervals of tuples in T and u denotes the highest value of the right end pointsof these tuples ,then every time point in the interval [l; u] is covered by an interval of some tuple inT (i.e., the interval [l; u] is the union of all the intervals in T); we de�ne T to be a maximal chain ifno proper super set of it is a chain. The relation S is obtained by having one tuple correspondingto each maximal chain T in R1 whose �rst p columns have the same values as those in T and whoseinterval is the interval [l; u] as de�ned above. For example, if a maximal chain has three tuples withintervals [10; 20]; [15; 30] [11; 40] then these will be represented by a single tuple whose interval is[10; 40].The resulting relation S satis�es the following property. For any two tuples t; t0 2 S, if t; t0 matchon the �rst p columns (i.e. columns corresponding to the variables), then their intervals will bedisjoint and furthermore these intervals will not even be consecutive; the non-consecutiveness of theintervals means that there is a non-zero gap separating intervals in tuples that give identical valuesto corresponding variables;The following SQL query computes S from R1. For any tuple t, we let t:l and t:u denote the left andright end points of the interval of t.SELECT(< list >; t1:l; t2:u)FROM R1 t1; R1 t2WHERE COND-B ANDNOT EXISTS (SELECT t3FROM R1 t3; R1 t4WHERE COND-C ANDNOT EXISTS (SELECT t5FROM R1 t5WHERE COND-D))In the above query, the < list > in the target list is the list of the �rst p attributes of t1. COND-Bspeci�es that t1 and t2 give identical values to the �rst p columns and that t1:l � t2:u, and there isno other tuple whose interval contains t2:u+1 or t1:l� 1; the later condition guarantees maximalityof the chain. The WHERE clause of the outermost query states that t1:l and t2:l denote the left and

right ends of a chain. This is indicated by stating that there are no tuples t3 and t4 whose intervalsintersect with the interval [t1:l; t2:u], and such that t3:u < t4:l and such that there is a gap betweent3:u and t4:l; COND-C speci�es the �rst of the two conditions; the existence of a gap between t3:u andt4:l is indicated by the inner most subquery starting with the clause \NOT EXISTS"; this subquerystates that there is no tuple t5 whose interval intersects with the interval [t3:u; t4:l]; COND-C statesthe later condition. COND-B,COND-C and COND-D also specify that the �rst p columns of t1 thrut5 match.Observe that if t1; t2 are any two tuples belonging to S and R2, respectively, such that their intervalsintersect, and t1:l � t2:l, and their values on common columns match, then g is satis�ed throughoutthe interval [t1:l; t2:u]. Now, the relation Rg is computed from S and R2 as follows. Let A be theunion of all column names in S and R2 that correspond to variables. The relation Rg will containjAj + 2 columns. For each t1 2 S and t2 2 R2 that satisfy the above properties, the relation Rgwill contain a tuple t such that t:l = t1:l; t:u = t2:u, and the �rst jAj columns of t contain thecorresponding values from t1 or t2. It is fairly straightforward to write a SQL query that computesRg from S and R2.� Let g = g1 until within c g2 and R1; R2 be the relations corresponding to g1 and g2 respectively.Let S be the relation computed from R1 as given in the previous case (i.e. the case for \until"). Lett1 2 S and t2 2 R2 be tuples that match on common columns and such that their intervals intersectand such that t1:l � t2:l. Let d = maxft1:l; t2:l � cg. It should be easy to see that g is satis�edthroughout the interval [d; t2:u] with respect to the evaluation given by columns corresponding tovariables in t1 and t2. For every such tuples t1 and t2, there will be a tuple t in Rg with t:l = d,t:u = t2:u and such that the variable columns in t have the same values as in t1 or t2. It should beeasy to write a SQL query that computes Rg from S and R2.� Let g = g1 until after c g2. Recall that g is satis�ed at some point if g2 is satis�ed at some pointwhich is at least c time units later and until then g1 is satis�ed. Let R1; R2; S; t1 and t2 be as inthe previous case. Let e = minft1:u; t2:ug. Also assume that t1:l � e � c. Now, it is easy to seethat g is satis�ed through out the interval [t1:l; e � c]. Corresponding to each t1; t2 satisfying theabove conditions, the relation Rg will have a tuple t such that t:l = t1:l, t:u = e� c and the variablecolumns in t have the same values as the corresponding columns in t1 or t2. We can easily write anSQL query that computes Rg from S and R2.� Let g = [y q] g1, and let R1 be the relation corresponding to g1. The atomic query q may havesome free variables. For example, q may be height(o) denoting the height attribute of the objectgiven by the variable o. We assume that the value of q is given by a relation Q with p+ 3 columnswhere the �rst p columns correspond to the free variables in q, the (p+1)st column is the value of qand the last two columns specify a time interval. Each tuple t in Q denotes the value of the atomicquery q during the interval speci�ed by the last two columns, and for the the instantiation of freevariables speci�ed by the �rst p columns; the value of the query is given by the p+ 1st column. Inabove example, Q will have four columns; the �rst column gives the object id, the third and fourthcolumns give an interval and the second column gives the height of the object during this interval.Now the relation R for g is obtained by joining Q and R1 where the join condition requires thatcolumns corresponding to common variables should be equal, the column corresponding to the yvariable in R1 should be equal to the (p+ 1)st column of Q, and the time intervals should intersect.For two joining tuples t1 in R1 and t2 in Q, in the output tuple we copy all variable columns from t1and t2 excepting the one corresponding to variable y, and the time interval in the output tuple willbe the intersection of the time intervals in t1 and t2.4 DiscussionIn this section we �rst discuss the implementation of our proposed data model on top of existing DBMS's(subsection 5.1), then we discuss architectural issues, particularly the implications of disconnection andmemory limitations of computers on moving objects (5.2), and various query processing strategies in amobile distributed system (5.3).

4.1 Implementing MOST on top of a DBMSOur system proposed in this paper (including an FTL language interpreter) can be implemented by asoftware system, called MOST, built on top of an existing DBMS. Such a system can add the capabilitiesdiscussed in this paper to the DBMS as follows. We store each dynamic attribute A as its sub-attributes; twoof the sub-attributes areA:initialvalue andA:updatetime; the other subattributes specify how the attributevalue changes over time. In case of when A is the position of a moving object, the other subattributes maybe the upper and lower bounds on the speed, or upper and lower bound functions of time that denote thepossible positions of the object at any time t.Any query posed to the DBMS is �rst examined (and possibly modi�ed) by the MOST system, and sois the answer of the DBMS before it is returned to the user. In the rest of this subsection we sketch themodi�cations to queries and answers of the underlying DBMS. For simplicity our exposition will assumethe relational model and SQL for the underlying DBMS. However, the same ideas can be extended toobject-oriented model.Recall that in section 4, we considered the problem of evaluating \may" queries in a MOST databasesystem modeling the motion of objects. There we had shown that when objects are moving on well de�nedroutes, and when there is uncertainty in their speeds, the evaluation problem for \may" queries, whosecondition part is a restricted conjunctive formula, can be reduced to the deterministic case where theobjects are traveling at their maximum speeds. We also presented a method for processing \may" queriesfor the the deterministic case when the condition part is given by an arbitrary conjunctive FTL formulaf . This method, inductively, computes a relation Rg corresponding to each subformula g of f . For thecase when g has no temporal operators, we assumed that the relation Rg are computed by some routines.The computation of Rg, for the case when g contains temporal operators, is achieved by translation into SQL queries that refer to previously computed relations corresponding to smaller subformulas. Thuswe can implement the above method on top of an existing DBMS that supports SQL provided we have amethod for computing the relations Rg for the case when g has no temporal operators. The method thatwe outline below can be employed for this purpose also.In this subsection, we address the problem of evaluating \may" queries whose condition part has notemporal operators and when there is uncertainty in the values of dynamic attributes. Our method appliesto any type of uncertainty (i.e. it is not limited to the case of moving objects whose speeds are speci�ed tolie between two bounds). Our method can be employed, as speci�ed in the previous paragraph, to processnon-temporal subformulas in the algorithm of section 4.Now consider any \may" query whose condition part is non-temporal. If the query does not contain areference to a dynamic the query is simply passed to the DBMS and the answer returned to the user.Now assume that the query contains references to dynamic attributes, but not temporal operators. Wewill distinguish between references in the SELECT and WHERE clauses. If the query contains a referenceto a dynamic attribute A only in the SELECT clause (i.e. in the target list), then the MOST systemmodi�es the query as follows. Instead of A, the query retrieves the sub-attributes of A from the DBMS;and the MOST system computes the current range of possible values of A for each retrieved object, beforereturning it to the user.Assume now that the WHERE clause is F , which is a boolean combination of atoms (for example, anatom may be A > 5). Consider �rst the case where there is only a single atom p that refers to dynamicattributes in F . Before passing the original query Q to the DBMS the MOST system replaces Q by twoqueries, Q1 and Q2. The transformation is based on the following equivalence. F = (F 0 ^ p) _ (F 00 ^ :p),where F 0 is F with p replaced by true and F 00 is F with p replaced by false. Q1 and Q2 are de�ned asfollows. The target list of Q1 and Q2 consists of the target list of Q, plus the subattributes of the dynamicattributes in p. The FROM clause of Q1 and Q2 is identical to that of Q. The WHERE clause of Q1 is F 0and that of Q2 is F 00. Q1 and Q2 are submitted to the underlying DBMS, and the results are processed asfollows before returning them to the user. The atom p is evaluated on each tuple in the result of Q1, andthe atom :p is is evaluated on each tuple in the result of Q2. (To do these evaluations the MOST systemcomputes the current values of the dynamic attributes appearing in p using the retrieved sub-attributes.)The tuples that do not satisfy the respective atoms are eliminated, and the projection of the union of theresulting tuples on the original target list is returned to the user.If the WHERE clause has multiple atoms referencing dynamic attributes then we can do as follows. Letp1; :::; pk be all such atoms. We �rst write F as (F 0 ^ p1)_ (F 00 ^:p1). We can repeat the above procedurefor other atoms also to rewrite F into an equivalent condition of the form (F1^G1) (F2^G2) :::^ (Fr ^Gr)where the clauses F1; F2; :::; Fr do not contain any dynamic attributes, and each clause Gi is a conditioninvolving the atoms p1; :::; pk. In the worst case, r may be as much as 2k. However, by identifying terms with

common subexpressions, in practice, we can get r to be much smaller. As explained earlier, correspondingto each Fi, we create a query Qi whose WHERE clause is Fi; the condition Gi is evaluated on each tuplein the result of Qi by computing the current values of the dynamic attributes mentioned in Qi. All theseresults are combined to obtain the answer to the main query.4.2 Continuous queries from moving objectsConsider a centralized DBMS equipped with the MOST capability. Suppose that a continuous query CQis issued from a moving object M . M may or may not be one of the objects represented in the database.After the centralized DBMS computes the set Answer(CQ), there are two approaches of transmitting itto M , immediate and delayed.In the immediate approach, the whole set is transmitted immediately after being computed. For eachtuple (S; begin; end), the computer inM is presenting S between times begin and end. However, rememberthat explicit updates of the database may result in changes to Answer(CQ). If so, the relevant changesare transmitted to M .The immediate approach may have to be adjusted, depending on the memory limitations at M . Forexample, M 's memory may �t only B tuples, and the set Answer(CQ) may be larger. In this case, theset Answer(CQ) needs to be sorted by the begin attribute, and transmitted in blocks of B tuples.The delayed approach of transmitting the set Answer(CQ) to M is the following. Each tuple(S; begin; end) in the set is transmitted to M at time begin. The computer at M immediately displays S,and keeps it on display until time end.Of course, intermediate approaches, in which subsets of Answer(CQ) are transmitted toM periodically,are possible.The choice between the immediate and delayed approaches depends on several factors. First, it dependson the probability that an update to Answer(CQ) can be propagated toM (i.e. thatM is not disconnected)before the e�ects of the update need to be displayed. Second, it depends on the frequency of updates toAnswer(CQ), and the cost of propagating these updates to M .4.3 Distributed query processingAssume now that each object represented in the database is equipped with a computer, and the databaseis distributed among the moving objects. In particular, assume that the distribution is such that eachobject resides in the computer on the moving vehicle it represents, but nowhere else. This is a reasonablearchitecture in case there are very frequent updates to the attributes of the moving object. For example, ifthe motion vector of the object changes frequently, then these changes may only be recorded at the movingobject itself, rather than transmitting each change to other moving objects or to a centralized database.Assume that each query is issued at some moving object. We distinguish between three types of MOSTqueries. The �rst, called self-referencing query, is a predicate whose truth value can be determined byexamining only the attributes of the object issuing the query. For example, \Will I reach the point (a,b)in 3 minutes" or, \When will I reach the point (a,b)" are self-referencing queries. Clearly, self-referencingqueries can be answered without any inter-computer communication.The second type of queries, called object queries, is a predicate whose truth value can be determinedfor an object independently of other objects. For example, \Retrieve the objects that will reach the point(a,b) in 3 minutes" is an object query; for each object we can determine whether or not it satis�es thepredicate, independently of other objects. To answer an object query, a mobile computer needs to beable to communicate with the other mobile computers. Assuming this capability, there are two ways toprocessing such a query issued from mobile object M . First is to request that the object of each mobilecomputer be sent to M ; then M processes the query. Second is to send the query to all the other mobilecomputers; each computer C for which the predicate is satis�ed sends the object C to M . The secondapproach is more e�cient since it processes the query in parallel, at all the mobile computers. The secondapproach is also more e�cient for continuous queries. In this case, the remote computer C evaluates thepredicate each time the object C changes, and transmits C to M when the predicate is satis�ed. Usingthe �rst approach C would have to transmit C to M every time the object C changes.The third type of query, called relationship query, is a predicate whose truth value can only be de-termined given two or more objects. For example, the query \Retrieve the objects that will stay within2 miles of each other for at lease the next 3 minutes" is a relationship query. The most e�cient way toanswer a relationship query is to send all the objects to a central location. The most natural location is

the computer issuing the query. When a relationship query is presented at mobile computer M , it requeststhe objects from all other mobile computers. Then M processes the query.5 Comparison to relevant workOne area of research that is relevant to the model and language presented in this paper is temporaldatabases [9, 13, 15]. The main di�erence between our approach and the temporal database works is that,by and large, those works assume that the database varies at discrete points in time, and between updatesthe values of database attributes are constant ([9] uses interpolation functions to some extent). In contrast,here we assume that dynamic attributes change continuously, and consequently the temporal data modelis di�erent than the data model presented in this paper. Thus, it is also not clear if and how temporalextensions to deal with imcomplete information (see [4, 7] are applicable to our context. Additionally,temporal languages other than FTL can be used to query MOST databases, but any other processingalgorithm will have to be modi�ed to handle dynamic attributes.Another relevant area is constraint databases (see [5] for a survey). In this sense, our dynamic attributescan be viewed as a constraint, or a generalized tuple, such that the tuples satisfying the constraint areconsidered in the database. Constraint databases have been separately applied to the temporal (see [2, 3, 1])domain, and to the spatial domain (see [6]). However, the integrated application for the purpose ofmodeling moving objects has not been considered. Furthermore, this integrated application has not beenconsidered since the model is di�erent than ours, thus perhaps inappropriate for modeling moving objects.The main di�erence is that in constraint databases all the tuples (or objects) that satisfy the constraint (inour case the values of the function at all time-points) are considered to be in the database simultaneously.In contrast, in our model these values are not in the database at the same time; at any point in time adi�erent value is in the database.Methods in object oriented systems are also relevant to our model. In an object-oriented system, thevalue of a dynamic attribute may be computed by a method (i.e. a program stored with the data) usingthe sub-attributes of a dynamic attribute. However, in this case, as far as the DBMS is concerned themethod is a black-box, and the only way to answer a query such as \retrieve the objects that will intersecta polygon P at some time between now and 5pm" is to evaluate the query at every point in time betweennow and 5pm. In contrast, in our model we \open" the black box, i.e. expose to the DBMS the waythe dynamic attribute changes. Thus the DBMS can currently compute which objects will intersect thepolygon in the future.Another body of relevant work is location-dependent software systems (e.g. [8, 16, 2]). There arethree di�erences between that work and the our work presented in this paper. First, although independentof a particular database management system our work pertains to incorporation of mobility in databasesystems. Second, our work pertains to situations where the mobile clients are aware not only of theircurrent location, but also of their movement, i.e. their future location. Indeed for airplanes and carsmoving on the highway, this is often the case. Third, in our model the answer to a query depends not onlyon the location of the client posing the query, but also on the time at which the query is posed.In our earlier work ([12]) we introduced FTL for specifying trigger conditions in active databases. Thealgorithm presented there does not work in the MOST model, since it can only deal with static attributes.In [11] we considered the same issues as here, but we did not deal with imprecision; namely, a dynamicattribute of an object has a unique value at a particular time, rather than a set of possible values.6 Conclusion and future workIn this paper we introduced the the MOST data model for representing moving objects. It has two mainaspects. First is the novel notion of dynamic attributes, i.e. attributes that change continuously as timepasses without being explicitly updated. There can be uncertainty in the value of the dynamic variables.Such variables are represented by sub-attributes that specify their values over time. For moving objects,these sub-attributes specify upper and lower bounds on the speeds of the objects; or they give a pair offunctions of time, and at any time the variable may have any value in the range whose lower and upperbounds are speci�ed by the two functions. A user can query future states of database values. This motivatesthe second aspect of our data model, namely the query language, FTL. It enables the speci�cation of futurequeries, i.e. queries that refer to future states of the database.

In support of the new data model, in this paper we developed algorithms for processing queries speci�edin FTL, we discussed a method of indexing dynamic attributes, and we discussed methods for building thecapabilities of MOST on top of existing database management systems. We also identi�ed several types ofqueries arising in the new data model, namely instantaneous, continuous and persistent queries. We alsodiscussed issues of query processing in a mobile and distributed environment.In the future, we intend implement the MOST data model on top of an existing DBMS, e.g. Sybase. Weintend to further explore various processing methods for the three types of queries, particularly in mobileand distributed environments. We intend to experimentally compare various mechanisms for indexingdynamic attributes.References[1] M. Abadi and Z. Manna. Temporal logic programming. Journal of Symbolic Computation, Aug. 1989.[2] M. Baudinet, M. Niezette, and P. Wolper. On the representation of in�nite data and queries. ACM Symposiumon Principles of Database Systems, May 1991.[3] J. Chomicki and T. Imielinski. Temporal deductive databases and in�nite objects. ACM Symposium onPrinciples of Database Systems, March 1988.[4] C. Dyreson and R. Snodgrass. Valid-time indeterminacy. International Conf. on Data Eng., Apr. 1993.[5] P. Kanellakis. Constraint programming and database languages. ACM Symposium on Principles of DatabaseSystems, May 1995.[6] J. Paradaens, J. van den Bussche, and D. V. Gucht. Towards a theory of spatial database queries. ACMSymposium on Principles of Database Systems, 1994.[7] Y.-C. P. S. Gadia, S. Nair. Incomplete information in relational temporal databases. Eighteenth VLDB, Aug.1992.[8] B. Schilit, M. Theimer, and B. Welch. Customizing mobile applications. USENIX Symposium on LocationIndependent Computing, Aug. 1993.[9] A. Segev and A. Shoshani. Logical modeling of temporal data. Proc. of the ACM-Sigmod International Conf.on Management of Data, 1987.[10] A. P. Sistla and E. M. Clarke. Complexity of propositional linear temporal logics. Journal of the Associationfor Computing Machinery, 32(3), July 1985.[11] A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and querying moving objects. ThirteenthInternational Conference on Data Engineering, April 1997.[12] P. Sistla and O. Wolfson. Temporal triggers in active databases. IEEE Transactions on Knowledge and DataEngineering (TKDE), 7(3), June 1995.[13] R. Snodgrass. The temporal query language tquel. ACM Trans. on Database Systems, 12(2), June 1987.[14] R. Snodgrass and I. Ahn. The temporal databases. IEEE Computer, Sept. 1986.[15] R. Snodgrass and ed. Special issue on temporal databases. Data Engineering, Dec. 1988.[16] G. Voelker and B. Bershad. Mobisaic: An information system for a mobile wireless computing environment.Workshop on Mobile Computing Systems and Applications, 1994.

