
Spatio-temporal Data Reduction with Deterministic Error
Bounds

Hu Cao
Department of Computer

Science,
University of Illinois at Chicago

Chicago, Illinois, USA

hcao2@cs.uic.edu

Ouri Wolfson
Department of Computer

Science,
University of Illinois at Chicago

Chicago, Illinois, USA

wolfson@cs.uic.edu

Goce Trajcevski
Department of Computer

Science,
University of Illinois at Chicago

Chicago, Illinois, USA

gtrajcev@cs.uic.edu

ABSTRACT
A common way of storing spatio-temporal information about
mobile devices is in the form of a 3D (2D geography + time)
trajectory. We argue that when cellular phones and Per-
sonal Digital Assistants become location-aware, the size of
the spatio-temporal information generated may prohibit effi-
cient processing. We propose to adopt a technique studied in
computer graphics, namely line-simplification, as an approx-
imation technique to solve this problem. Line simplification
uses a distance function in producing the trajectory approx-
imation. We postulate the desiderata for such a distance: it
should be sound, namely the error of the answers to spatio-
temporal queries must be bounded. We analyze several dis-
tances, and prove that some are sound in this sense for some
types of queries, while others are not. Interestingly, not a
single distance analyzed proves to be sound for all the com-
mon spatio-temporal queries, and therefore multi-distance
line-simplification is introduced and analyzed. Then we pro-
pose an aging mechanism which gradually shrinks the size
of the trajectories as time progresses. Finally, we analyze
experimentally the effectiveness of line-simplification in re-
ducing the size of a trajectories database.

Categories and Subject Descriptors: H.2.m [Informa-
tion Systems Applications]: Miscellaneous

General Terms: Theory, Experimentation

Keywords: Moving Objects Database, Line Simplification

1. INTRODUCTION
Location management, i.e. the management of transient
location information, is an enabling technology for location
based service applications. It is also a fundamental compo-
nent of other technologies such as fly-through visualization
(the visualized terrain changes continuously with the loca-
tion of the user), context awareness (location of the user
determines the content, format, or timing of information

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DIALM–POMC’03, September 19, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-765-6/03/0009 ...$5.00.

delivered), augmented reality (location of both the viewer
and the viewed object determines the type of information
delivered to viewer), and cellular communication.
We view location management as the problem of manag-
ing a set of spatio-temporal points of the form (x, y, t). Such
a point indicates that a moving object m was or will-be at
geographic location with coordinates (x, y) at time t. These
spatio-temporal points may be generated, for example, by a
GPS receiver on board m. We will call such point a GPS
point, although it may be generated by other means (e.g.
PCS network triangulation, a proximity sensor, etc...). Now,
consider that a GPS receiver can generate a new (x, y, t)
point every second, and that the number of moving objects
may be hundreds of millions to billions. Remember also that
one is interested in past locations, and planned future loca-
tions, and that historical spatio-temporal points may need
to be mined for road-network capacity planning, accident
replay, municipal transportation planning (e.g. answering a
query such as: how many times was bus number 5 late by
more than five minutes at a stop in the last year), etc. Thus
one can immediately recognize the storage-space problem
that location based services applications will face, as well as
the computation burden for processing such large amount
of information. Additionally, in online tracking where the
spatio-temporal points are transmitted from a moving object
to a server, this storage problem translates into a bandwidth
and power problem.
A key observation that lies at the foundation of this pa-
per is that a GPS point (x, y, t) can be eliminated, and its
space saved, if (x, y, t) can be approximated with a reason-
able accuracy by interpolating the adjacent (i.e. before and
after) GPS points1. We formalize this intuition by employ-
ing a mechanism based on line simplification, that has been
studied in computational geometry, cartography and com-
puter graphics. Basically, line simplification approximates
a polygonal line by another that is “sufficiently close” (the
term will be precisely defined), and has less straight-line
segments (or points) and thus takes less storage-space.
The main advantage of line simplification over the most
popular lossy compression, namely wavelets[1, 10], is that

1Observe that even in the absence of the storage-space con-
cern, location-based applications require interpolation of the
location between GPS points. Interpolation is necessary in
order, for example, to answer the query: “where was mov-
ing object m at 2pm”, assuming that a GPS sample for 2pm
does not exist.

33

it provides a deterministic bound on errors. No other lossy
compression methods that we are aware of can do that.
Our experimental results indicate that the storage-savings
using line simplification is dramatic. Specifically, we used
real datasets of moving objects trajectories2. The trajec-
tories dataset was obtained from the trace of GPS-points
recorded by the shuttle buses on the UCLA campus (we
elaborate on our experimental settings and results in Section
5.)3. Our experiments indicate that storage-size decreases
in an exponential-like manner as the allowed imprecision in-
creases, and an imprecision tolerance of 0.1 miles produces
99% storage savings.
In addition to the storage and processing savings, the at-
tractiveness of line simplification (compared to other data
compression techniques such as wavelets) stems from the
fact that the approximation carries a given error bound.
Namely, the distance between the original trajectory and
the approximation is bounded by a parameter of the sim-
plification called the error-tolerance. However, we discov-
ered that, surprisingly, although the approximation error is
bounded, the error of the answers to queries4 may not be
bounded. Whether or not it is bounded, depends on the
combination of the distance function(or distance for short)
used in the approximation, and the spatio-temporal query
type. In other words, for some combinations(query-type,
distance) the answer-error is bounded (in this case we call
the combination sound), for others it is not. For example,
the Euclidean distance function is not sound for the query
“where was moving object m at time t”. We provide a com-
prehensive analysis of the soundness of combinations(query-
type, distance).
Then we considered an aging mechanism by which a tra-
jectory is represented by increasingly coarser approxima-
tions as time progresses. For example, initially, when the
trajectory is stored, it is approximated by a polyline with
distance at most 0.1 mile from the original, after 2 months
it is approximated by a polyline (which is smaller in size
than the first) at distance at most 0.2 miles from the origi-
nal trajectory, etc. We show that some simplification algo-
rithms are ”aging-friendly” (e.g. the Douglas-Peuker heuris-
tic), and some are not (e.g. the optimal simplification al-
gorithm). By aging friendliness we mean that even though
the original trajectory is not saved, at every stage we obtain
a trajectory that could have been obtained using the larger
tolerance from the original trajectory.
We also analyzed experimentally various simplification al-
gorithms. One of the conclusions is that the Douglas-Peuker
(DP) algorithm achieves near-optimal savings at a far supe-
rior performance.
In summary, the main contributions of this paper are as
follows:
•We introduce the concept of soundness of a data compres-
sion mechanism.

2The trajectory of a moving object is the sequence of (x, y, t)
points that represents a trip of the object.
3We also conducted experiments on a trajectories dataset
that consists of 1,000 trajectories describing the motion
plans of objects in Chicagoland, which we generated by se-
lecting random source-destination pairs for a trip, on an
electronic map. Unfortunately, due to space limitations we
will not describe these results here.
4i.e. the distance between the answers on the original tra-
jectory and the approximation.

• We analyze the soundness of several (distance, spatio-
temporal query) combinations.
• We quantify experimentally the power of line simplifica-
tion using different distances and simplification algorithms.
•We analyze the behavior of approximation (simplification)
algorithms with respect to data aging, and show that some
are well behaved whereas others are not.
The rest of this paper is organized as follows. Section
2 discusses the concept of a trajectory and introduces the
problem of trajectory reduction/simplification. Section 3
introduces the concept of soundness and analyzes it with re-
spect to (distance , query type) combinations. Section 4 an-
alyzes simplification algorithms with respect to aging. Sec-
tion 5 presents our experimental results of trajectory simpli-
fication using different distances, tolerances and algorithms.
In Section 6 we position our paper with respect to the rele-
vant works, and in Section 7 we provide concluding remarks
and directions for future work. In the appendix we provide
proof sketches for the theorems.

2. TRAJECTORY REDUCTION
In this section we present basic definitions and we intro-
duce the concept of trajectory reduction by a line simplifi-
cation. Specifically, in subsection 2.1 we illustrate the na-
ture (and magnitude) of the problems which may arise when
storing and processing trajectories, and we introduce the
line-simplification approach to address these problems. In
subsection 2.2 we discuss several possible distances for this
approach.

2.1 The Problem and Line Simplification So-
lution

Representing the (location,time) information of the mov-
ing object as a trajectory is a typical approach (c.f. [20, 22,
24]):

Definition 1. A trajectory is a function T : [1, n]→ R
3

with n ∈ N that satisfies the following conditions: (1) T (1) =
(x1, y1, t1), T (2) = (x2, y2, t2), ..., T (n) = (xn, yn, tn), such
that ti < ti+1 for all i ∈ {1, . . . , n − 1}; each (xi, yi, ti) is
called a vertex of the trajectory T ; (2) For each 0 ≤ λ ≤ 1
and for each i ∈ {1, . . . , n − 1}, T (i + λ) = (1 − λ)T (i) +
λT (i+ 1). For every point (x, y, t) on the trajectory we say
that (x, y) is the expected location at time t. The projection
of T on the X-Y plane is called the route of T .

Intuitively, a trajectory defines the location of a moving
object in the X-Y plane as an implicit function of time t.
The object is at (xi, yi) at time ti. The vertices of a trajec-
tory represent, for example, the readings of the GPS receiver
on board a vehicle or other moving object. During each
segment [ti, ti+1] we assume that the object moves along a
straight line, at constant speed, from (xi, yi) to (xi+1, yi+1).
Thus the location of the moving object at a point in time t
between ti and ti+1, (1 ≤ i < n), called the expected loca-
tion at time t, is obtained by a linear interpolation between
(xi, yi) and (xi+1, yi+1).
An illustration of a trajectory and its route is shown in
Figure 1.
Trajectories may impose tremendous storage requirements
when the location is sampled frequently. To address this
problem, we propose to tradeoff accuracy for efficiency using
line simplification. The subject of line simplification has
been extensively studied in computational geometry and in

34

x

t

y

Trajectory

Route

Figure 1: A trajectory and its two dimensional route

many practical applications such as cartography, computer
graphics, image processing [3, 8, 6, 14, 16, 18] since the
1970’s. The goal was similar to ours: given a polygonal
curve, approximate it by another one which is “not very
far” from the original, but has fewer points. In contrast
to our present work, these references did not consider the
implication of the approximation on query processing.
Now we precisely define the “not very far” statement in
the context of trajectories. Let M be the distance between
a 3D point and a 3D line. The distance dM (p, T) between
p and a trajectory T is the minimum (among all line seg-
ments of T) M -distance between p and a line segment of
T . The distance between two trajectories is the Hausdorff
distance[4] between them. The Hausdorff M -distance from
a trajectory T to another trajectory T ′ is defined as

D̃M (T, T
′) = max

p∈T
d(p, T ′)

i.e. the Hausdorff distance from T to T ′ is the maximum
distance from a point of T to T ′.
The symmetric Hausdorff distance between T and T ′ (or,
for short, the Hausdorff distance between two trajectories)

is defined as DM (T, T
′) = max(D̃M (T, T

′), D̃M (T
′, T)); i.e.

it is the maximum of the distances from T to T ′ and from
T ′ to T .

Definition 2. Let {p1, p2, . . . pn} denote the set of ver-
tices of a given trajectory T . For a subset {p′1, p′2, . . . , p′s} ⊆
{p1, p2, . . . pn}, denote by T ′ the trajectory with these ver-
tices. Let ε be a real number. We say that T ′ is an
ε-simplification of T with respect to M (equivalently, T ′ is
a simplification of T with an M-tolerance ε), denoted by
T ′ = S(T, ε,M), if DM (T, T

′) ≤ ε.

Figure 2 shows a simplified trajectory corresponding to
the original trajectory depicted on Figure 1.
One comment is that traditionally, the definition of simpli-
fication (used in computational geometry, cartography, com-
puter graphics, etc.) considers only the distance from the
original trajectory to the simplification, and not the sym-
metric distance as we do here. However, in databases, since
queries operate on the simplifications the symmetric dis-
tance has to be bounded. However, for practical purpose
the distinction is mute because we have proven that all the
distances discussed in this paper are symmetric. Thus, if the
distance from T to T ′ is bounded by ε so is the distance from
T ′ to T . Due to space limitations, this analysis is omitted
from this paper.
For a given trajectory T and a tolerance ε, an optimal

ε-simplification is an ε-simplification with a minimum num-

x

t

y

Figure 2: A simplification (solid line) of trajectory
in Figure 1

ber of vertices. The optimal ε-simplification can be found
using dynamic programming techniques straightforwardly in
O(n3) time, or in quadratic running time using improved al-
gorithms[3, 6, 16]. For better performance, heuristic-based
approaches are often used in practice, especially in GIS.
Among them, the best known and studied algorithm is Dou-
glas and Peucker’s (DP) [8].

2.2 Distance Functions
When simplifying 3D trajectories one needs to carefully
consider the choice of the dimensionality and the distance
used in the simplification algorithms. For example, one pos-
sibility is to simplify the 3D trajectory using the Euclidean
distance. Another possibility is to use a 2D simplification by
projecting the trajectory onto its 2D route, and then raising
back to 3D by considering the time of the vertices in the
simplified route. As we will demonstrate shortly (and by
experiments later), the choice of distance function and algo-
rithm impacts the amount of storage savings. However, we
will also demonstrate in the next section that the choice of
the distances affects the “quality” (i.e. error) of the answers
to spatio-temporal queries.
In this section, we focus on the distances and discuss
their applicability in the line simplification algorithm. Let
pm = (xm, ym, tm) denote a point, and pi, pj denote the
straight line segment between the vertices pi = (xi, yi, ti)
and pj = (xj , yj , tj) of a trajectory T . The distances be-
tween the pm and the straight line segment pi, pj are defined
as follows:
• E2 – The two dimensional Euclidean distance, defined
as: E2(pm, pipj) =

√
(x′

m − x′
c)2 + (y′

m − y′
c)2, where p

′
c =

(x′
c, y

′
c) is the point on the 2D straight line segment p

′
ip

′
j

(i.e. the 2D projection of pipj) which is closest in terms
Euclidean distance to p′m = (x

′
m, y′

m) (the 2D projection of
pm = (xm, ym, tm)).
• E3 – The three dimensional Euclidean distance, defined
as:
E3(pm, pipj) =

√
(xm − xc)2 + (ym − yc)2 + (tm − tc)2

where pc = (xc, yc, tc) is the point on pipj which is closest
to pm = (xm, ym, tm).
• Eu – The three dimensional time uniform distance is de-
fined when tm is between ti and tj , as follows:

Eu(pm, pipj) =
√
(xm − xc)2 + (ym − yc)2

where pc = (xc, yc, tc) is the unique point on pipj which has
the same time value as pm (i.e. tc = tm). In other words, the
time uniform distance is the 2D Euclidean distance between
pm and the 3D point on pipj at time tm. This distance func-

35

tion is defined since, in contrast to the Euclidean distances,
it guarantees bounded-error answers to spatial queries on
trajectories (see next section).
• Et – The time distance is defined as: Et(pm, pipj) =
|tm − tc|, where pc is the point on the 2D projection on the

X-Y plane p′ip
′
j which is closest in terms of the Euclidean

distance to p′m, the 2D projection of pm. In other words,
intuitively, to find the time distance between pm and the
line segment proceed as follows. First project both on the
X-Y plane, then find the point p′c on the projected segment
which is closest to p′m, and finally find the difference between
the times of pc and pm. This distance is defined here since
it guarantees bounded-error answers to temporal queries on
trajectories.
The distances defined above are illustrated in Figure 3.
As a consequence of their respective definitions, the relation-
ships among E2, E3, and Eu, are expressed by the following
claim:

Claim 1. Given a 3D point pm and a line segment pipj

between two vertices of a trajectory, if tm is between ti and
tj, then E2(pm, pipj) ≤ E3(pm, pipj) ≤ Eu(pm, pipj).

p′
i

pi

p′
m

p,

p′
j

pj

E3

EuEt

E2

t

x

y

Figure 3: The relationship among the distances.

Et does not have a straightforward relationship to the
other distances. It can be shown that Et is smaller than the
Eu divided by the average speed between pi and pj .
Claim 1 implies that when E2 is used in a simplification
with a given tolerance ε, more vertices of a trajectory will
be eliminated than when E3 is used with ε. Similarly, using
the E3 distance will “save” more points than using the Eu

distance. More formally, as a consequence of Property 1, we
have (Let ‖T‖ denote the “size”, i.e. the number of vertices
of a trajectory T):

Corollary 1. Let T be a trajectory and ε a tolerance.
Let T ′

2 = S(T, ε, E2), T
′
3 = S(T, ε, E3) and T ′

u = S(T, ε, Eu)
denote the respective optimal ε-simplifications. Then ‖T ′

2‖
≤ ‖T ′

3‖ ≤ ‖T ′
u‖.

3. BOUNDED ERROR QUERIES ON SIM-
PLIFIED TRAJECTORIES

In this section we will analyze the relationship between
the distances and the error in the query answers. As we
mentioned, our desiderata is to have a bound on the error
produced when answering spatio-temporal queries.

In the first subsection we define the types of spatio-temporal
queries that we analyze in the rest of this section. In the
second subsection we define the notion of soundness for
a (query-type, distance) pair, i.e., to produce a bounded-
error answer to the query, on a bounded error trajectory-
approximation (where the approximation is according to
the distance). In the third subsection we analyze several
of the above pairs, and conclude that none of the previously
defined distances is sound for all types of spatio-temporal
queries. Thus we define multidistance trajectory simplifica-
tion, and show that the combination of Et and Eu is sound
for all the query types, except the join. In the fourth sub-
section we show that this combination is sound for the join
as well.

3.1 Spatio-temporal queries
Most spatio-temporal queries are composed of the follow-
ing five types of queries, where at, when at, intersect, near-
est neighbor and spatial join. We introduce the semantics
of each one of the operators on a trajectory T = (x1, y1, t1),
(x2, y2, t2), ..., (xn, yn, tn), as follows:
• where at(T , t) – returns the expected location (c.f. Defi-
nition 1) at time t. If t < t1 or t > tn then the operator is
undefined.
• when at(T, x, y) – returns the time t at which a moving
object on trajectory T is expected to be at location (x, y). If
the location does not belong to the route of the trajectory,
or the moving object visits the location more than once, or
is stationary at the location, then the operator is undefined.
• intersect(T, P, t1, t2) – is true if the trajectory T intersects
the polygon5 P between the times t1 and t2. (This is also
called a spatio-temporal range query).
• nearest neighbor(T,O, t) – The operator is defined for an
arbitrary set of trajectories O, and it returns a trajectory
T ′ of O. The object moving according to T ′, at time t, is
closest than any other object of O to the object moving ac-
cording to T .
• spatial join(O, th) – O is a set of trajectories and the op-
erator returns the trajectory pairs (T1, T2) such that their
distance (according to some distance functions) is less than
the threshold th. The distance used in the join may be differ-
ent than the distance used for simplification. This operator
will be further discussed in the last subsection.
Clearly, the composition of these query types can express
more complex queries. For example “Retrieve the 2PM loca-
tion of the moving objects which will intersect the Parks Pa

and Pb between noon and 5PM” (assuming that the parks
are represented as polygons).

3.2 Desiderata for Soundness of Distances
When querying simplified trajectories, the answers may
deviate from those on the original trajectories. To incorpo-
rate trajectory reduction techniques in MOD systems, the
imprecision introduced by line simplification must be man-
aged. We introduce a way of doing so, based on the following
observation. If the users can predict a priori, namely before
data reduction, the maximum error (or imprecision) δ of
answers to queries for each given simplification tolerance ε,
then the simplification can be restricted to tolerances ε for
which the imprecision is acceptable. Observe that in this
scheme the maximum imprecision depends on the simplifi-

5for simplicity of exposition we will assume throughout this
paper that the polygons are convex.

36

cation tolerance, but not on the individual trajectory. This
scheme is possible only if the simplification distance is sound.
Now we explain the notion of soundness. Let q(T) denote
the answer of some spatio-temporal query q with respect to
a trajectory T . Similarly, let q(T ′) denote the answer of the
same query q when posed to a simplification T ′. Intuitively,
if T ′ = S(T, ε, E), we say that distance function E is sound
for q when there exists a bound δ on the distance between
the two answers. More precisely, if we let dist(q(T),q(T’))
denote the distance between the two answers, the soundness
of E means that for every ε there exists a δ such that for
every trajectory dist(q(T),q(T’)) ≤ δ.
We formalize this notion for each of the queries described
above(except for spatial join, which is separately discussed
in the following subsection), as follows:

Definition 3. A distance function E is sound for the re-
spective query if it satisfies the following: For every simpli-
fication tolerance ε, there exists a positive number δ, called
the answer error bound, such that for every trajectory T and
for every simplification T ′ = S(T, ε, E):
• where at – For every t for which both T and T ′ are defined,
let (x, y) = where at(T, t) and let (x′, y′) = where at(T ′, t).
Then, the distance between (x, y) and (x′, y′) is bounded by

δ, namely
√
(x′ − x)2 + (y′ − y)2 ≤ δ.

• when at – Let t′ = when at(T ′, x, y), and let t = when at
(T,x,y). If both t and t′ are defined, then |t− t′| ≤ δ.
• intersect – For any polygon P , if intersect(T ′, P, t1, t2)
is true, then there exists a time t ∈ [t1, t2] such that the
expected location of the original trajectory T at time t is
no further than δ from P ∪ interior of P . Conversely, if
intersect(T ′, P, t1, t2) is false, then for every t ∈ [t1, t2], the
expected location of the original trajectory T at time t is ei-
ther outside P , or, if inside, it is within δ of a side of P
(i.e. it does not penetrate P by more than δ).
Intuitively, this means that if the simplification T ′ inter-
sects P , then T is not further than δ from P ; and if T ′ does
not intersect P , then T does not intersect P , or intersects
it ”very little”. Thus, the user, knowing that the query ad-
dresses approximate trajectories, may decide to adjust the
polygon P accordingly.
• nearest neighbor – Let O be an arbitrary set of trajec-

tories and let o = nearest neighbor(T,O, t) and let o′ =
nearest neighbor(T ′, O, t). Let do be the Euclidean distance
between o and T at time t, and let do′ be the Euclidean dis-
tance between o′ and T at time t. Then |do − do′ | ≤ δ.
Intuitively, it means that the difference between the dis-
tances (o to T) and (o′ to T) is bounded by δ. In other
words, for any set of trajectories (or moving objects) O, at
any time t, the error of the nearest neighbor query is at most
δ.

3.3 Soundness of the Distances
Now we inspect the soundness of the distances E2, E3,

Eu and Et with respect to the query types. There are 16
possible combinations of distances and query types (four dis-
tances and four types). However, we reduce the number of
combinations to inspect by studying subsumption relation-
ships among query types and among distances. Then we
prove the soundness or unsoundness of the necessary com-
binations individually. It turns out that no single distance
introduced is sound for all the query types. Thus, we intro-
duce simplification with multiple distances and prove that

the distance combining Eu and Et is sound for all query
types.
Consider two distances M1 and M2. Suppose that for ev-
ery pair of trajectories T and T ′, if M1(T, T

′) ≤ ε, then
M2(T, T

′) ≤ ε. In this case, we say that distance M1 is
weaker than M2, denoted as M1 ≤ M2. The following rela-
tionship among distances is a consequence of Claim 1.

Corollary 2. Eu ≤ E3 ≤ E2

The following subsumption relationships hold among dis-
tances with respect to soundness.

Theorem 1. For two distances M1 and M2, if M1 ≤ M2,
then for every query type Q for which M2 is sound, M1 is
also sound.

The following subsumption relationships hold among queries
with respect to soundness.

Theorem 2. For any distance function M , if it is sound
for the where at query type, then it is also sound for the
intersect and nearest neighbor types. Furthermore, if M is
not sound for the where at query type, then it is also not
sound for the intersect and nearest neighbor types.

Theorem 3. The E3 distance is not sound for the where at
query type.

Together with Corollary 2 and Theorem 1, the above the-
orem implies that

Corollary 3. The E2 distance is not sound for the where at
query type.

Theorem 4. The Eu distance is sound for the where at
query type. Furthermore, for any simplification tolerance ε,
the answer-error-bound of where at is equal to ε.

Together with Theorem 2, the above theorem implies

Corollary 4. The Eu distance is sound for the intersect
and nearest neighbor query types.

It can also be shown that for the distance Eu, for any
simplification tolerance ε, the answer-error-bound of the in-
tersect query type is equal to ε. The bound of the near-
est neighbor query type depends on whether or not the set
of trajectories O is simplified; it is ε if O is not simplified,
and 2ε if it is.

Theorem 5. The distance Eu is not sound for the query
type when at.

Theorem 6. The distance Et is sound for the when at
query type. Furthermore, for any simplification tolerance ε,
the answer-error-bound of when at is equal to ε.

Theorem 7. The distance Et is not sound for the where at
query type.

We can summarize the above results in the following table.
Table 1 indicates that there is not a single distance that
is sound for the four spatio-temporal query types we have
studied. Thus, to produce bounded-error answers to the
four query types, a trajectories database will need to be
simplified using a combination of distances. We do so as
follows. Given two distance functions between trajectories
M1 andM2, we define the combined distance, denotedM1∧
M2, as: M1 ∧M2(T, T ′) = max {M1(T, T ′),M2(T, T ′)}.
The following is easy to prove based on the definitions:

37

Where at When at Intersect Nearest
Neighbor

E2 No No No No
E3 No No No No
Eu Yes No Yes Yes
Et No Yes No No

Table 1: The soundness of the distances for spatio-
temporal query types.

Claim 2. M1 ∧M2 ≤ M1, M1 ∧M2 ≤ M2

Consequently:

Claim 3. For a distance M1 and a distance M2, let the
set of sound operators of M1 be SO(M1) and the set of sound
operators of M2 be SO(M2). Then the multi-distance M1 ∧
M2 is sound for all the query types in set SO(M1)∪SO(M2).

Thus:

Corollary 5. The distance Eu ∧ Et is sound for all the
spatio-temporal query types. For any simplification tolerance
ε, the answer-error-bound is ε for where at, when at and
intersect, and 2ε for nearest-neighbor.

In conclusion, the appropriate distance to use in a sim-
plification depends on the type of queries expected on the
database of simplified trajectories. If all spatio-temporal
queries are expected, then Eu ∧ Et should be used. If only
where at, intersect, and nearest neighbor queries are ex-
pected, then a more concise approximation with the same
answer-error-bound can be achieved by using the Eu dis-
tance. If only when at queries are expected, then the Et

distance should be used.

3.4 Spatial Join
The spatial join between trajectories is separately dis-
cussed in this section. As mentioned in section 3.1, the
definition of spatial join depends on the distance function
between trajectories. For example, two of the most com-
mon distance functions are the Hausdorff distance (defined
in section 2) and the mean square root error(MSRE) defined
as

D(T, T ′) = 1
te−ts

∫ te

ts

√
(x(t)− x′(t))2 + (y(t)− y′(t))2dt

where ts and te are the start time and the end time of the
comparison time period.
The soundness for the spatial join operation is defined as
follows. A distance M is sound for the spatial-join opera-
tion with a distance function D if it satisfies the following:
For every real positive number ε, there exists a real number
δ such that for every trajectory T1 and every simplification
T ′

1 = (T1, ε,M) and for every trajectory T2 and every sim-
plification T ′

2 = S(T2, ε,M), |D(T1, T2)−D(T ′
1, T

′
2)| ≤ δ.

Theorem 8. Consider a spatial-join with a distance func-
tion D. A distance M is sound for the spatial-join if D is a
metric and M ≤ D.

Together with Corollary 2, Theorem 8 implies

Corollary 6. Eu is sound for the spatial-joins with the
distance function E2, E3 or Eu.

Based on Theorem 8, we get

Theorem 9. Eu is sound for the spatial-join with the
MSRE distance function.

4. AGING OF THE TRAJECTORIES
Often, the older the information gets, the less precision is
necessary. For example, it is possible that the coarseness of
the trajectory approximation is allowed to increase as time
progresses. In this case a data aging mechanism can be
introduced.
Assume, for example, that the error bound on the queries
is to be ≤ 0.1 mile after the first month; ≤ 0.2 after the
second month; ≤ 0.3 after the third month; etc. Then, one
can simplify the original trajectory T to T ′ = S(T, 0.1,M)
after the first month, to T ′′ = S(T, 0.2,M) after the second
month, etc. However, a problem arises. At the beginning of
the second month one needs to generate T ′′ = S(T, 0.2,M),
but the original trajectory T does not exist anymore, only
T ′ = S(T, 0.1,M). By simplifying T ′ can one obtain the
trajectory T ′′, or a same-size trajectory? If so, should one
simplify T ′ by ε = 0.1 or ε = 0.2, or ε = 0.2 + 0.1, or some
other value? It turns out that the answer to these questions
depends on the simplification algorithm.

Theorem 10. Let M be a distance, and let ε1 < ε2 be
two tolerances. For an arbitrary trajectory T , let T ′′

1 be an
ε2-simplification of the ε1-simplification of T ; both simpli-
fications are by an algorithm that produces the optimal ε-
simplification. Then there are trajectories for which T ′′

1 is
an (ε1 + ε2)-simplification of T but not an ε2-simplification
of T .

The above theorem indicates the following. Suppose that
the allowed bounds on the simplification errors are ε1 for the
first month, ε2 for the second month, etc. Then the aging
procedure after the first month will not work. Specifically, if
one simplifies the (once-simplified) trajectories database by
ε1, then no further data reduction will result; if one simpli-
fies it by ε2 then the resulting database may have trajecto-
ries that violate the aging specification, i.e. they may have
an error (compared to the original trajectory) that exceeds
the allowable ε2 error. Thus, to use the optimal algorithm,
one needs to specify a sequence of tolerances ε1, ε2, ε3, such
the input database is simplified by ε1, the resulting database
by ε2, the resulting database by ε3, etc. And the approxi-
mation errors are bounded by ε1, ε1 + ε2, ε1 + ε2 + ε3, etc.,
respectively.
Now consider the aging using the DP algorithm[14]. The
DP algorithm recursively approximates a given polyline by
a “divide and conquer” technique, where the farthest dis-
tance point is used to select the divide point in the polyline.
Given a begin vertex pi and an end vertex pj , if the great-
est distance from some vertex pk to the line segment pipj is
greater than the tolerance ε, break the trajectory into two
pieces at pk and recursively call the procedure on each of the
sub-chains pipk and pkpj ; Otherwise, the vertices between
pi and pj are removed from trajectory and this segment is
simplified as a straight line pipj . Thus:

Theorem 11. Let M be a distance, and let ε1 < ε2 be
two tolerances. Then a trajectory T simplified by the DP
algorithm (DP-simplified for short) using ε2 is the same as T
DP-simplified using ε1 first, and subsequently DP-simplified
by ε2. In other words:
S(T, ε2,M) = S(S(T, ε1,M), ε2,M))

The above theorem indicates that the DP algorithm is
much more conducive to data-aging in the following sense.

38

Suppose that the allowed bounds on the simplification errors
are ε1 for the first month, ε2 for the second month, etc. Then
using the DP algorithm one can simplify the input database
by ε1, then the resulting database by ε2, then the resulting
database by ε3, etc.

5. EXPERIMENTAL STUDY
In this section we give a description of our experimental
results and the conclusions based on them. In the first sub-
section we describe the setting for the experiments, namely
the input datasets, the methodology and the environment.
Then, in the following subsection, we compare error of the
line simplification and the wavelet transform. We also ana-
lyze the data reduction obtained by the different distances
and by two simplification methods, the DP algorithm and
the optimal one. Finally, We compare the execution times
of the DP algorithm and the optimal one.

5.1 Datasets and Methodology
The dataset we used in the experiment consists of 38 tra-
jectories constructed from GPS traces. The traces are ob-
tained from the on-board GPS receivers on the UCLA cam-
pus shuttle buses. The location was sampled every second6.
The data was collected on April 24th, 2002. Each trajectory
represents the continuous trip of a UCLA campus shuttle-
bus on that day. The average number of vertices per trajec-
tory is 7085 and the average length of a trajectory is 16.352
miles.
The data reduction is expressed by the reduction ratio
(rr), which is number of vertices of the simplified trajectory
/ number of vertices of the original trajectory (i.e. before
simplification). In other words, the storage savings of the
simplification is 1− rr. For each data reduction experiment
we varied the simplification tolerance ε from 0.05 mile to 1
mile.
All experiments reported were performed on a Pentium
III 866MHz machine with 512MB of SDRAM main memory,
running on Suse Linux.

5.2 Experiment Results

MSRE Eu

Ratios DP Wavelet DP wavelet

1% 0.0267 0.0410 ≈0.098 0.522
2% 0.0124 0.0203 ≈0.051 0.272
5% 0.0032 0.0076 ≈0.013 0.168
10 % 0.0011 0.0035 ≈0.004 0.037

Table 2: The average MSRE and Eu errors for vary-
ing compression ratios for the UCLA dataset.

First, we compared the errors of wavelets and line simpli-
fication as measured by the MSRE and Eu distances. It is
important to observe that wavelets does not provide a bound
on the error, but we measured the error for every compres-
sion ratio obtained by wavelets. We used the Haar wavelets
variant[1] and the DP algorithm in the comparison. The
wavelets method has been shown to outperform others such
as DFT and DCT[1, 13]. The results of this comparison are
shown in Table 2. It shows that the error of the DP algo-
rithm is consistently lower than that of wavelets. According

6For more information about UCLA shuttle trajectory,
please visit http://www.cs.ucla.edu/ cjlai/bustrack/

to the MSRE, DP is at most 65% of wavelet, and according
to Eu it is at most 20%.

0

1

2

3

4

5

6

7

8

9

10

.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 s

im
pl

ifi
ed

 tr
aj

ec
to

ry
/o

rig
in

al
 tr

aj
ec

to
ry

ε

E2
E3
Eu
Et

Eu ∧ Et
wavelet of Eu

(a) Using the DP algorithm

0

1

2

3

4

5

6

.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 s

im
pl

ifi
ed

 tr
aj

ec
to

ry
/o

rig
in

al
 tr

aj
ec

to
ry

ε

E2
E3
Eu
Et

Eu ∧ Et
wavelet of Eu

(b) Using the optimal algorithm

Figure 4: The reduction ratio with different toler-
ances

We investigated the nature of the savings of each of the
four distances E2, E3, Eu and Et

7 and the combined sim-
plification of Eu ∧ Et. Figure 4 presents the average size of
the reduced trajectory as a percentage of that of the original
average trajectory, for each one of the distances. The sixth
curve represents wavelet compression using Eu. First, for
all distances, the reduction ratio monotonically decreases as
the value of ε increases. Overall, in all cases, the reduction
obtained by the optimal algorithm is several times better
than the reduction of the DP heuristic, with the exact value
depending on the distance and the tolerance. However, the
savings of both methods is over 90%. One can also observe
that Corollary 1 is verified by the experiment. Namely, E2

has better savings than E3, and E3 is better than Eu. Ad-
ditionally, according to both algorithms Eu compresses the
trajectories more than Et ∧Eu; this is also true for Et. An-
other observation is that the DP heuristic is not doing well
for the Et and the Eu ∧ Et distances. Specifically, we see
that for the optimal algorithm the savings for these distances
ranges from 98.6% to 99.8% depending on the tolerance ε.
However, for the DP heuristic, this range is 90.5% to 94%.
Next we compared the time-performance of the optimal
and DP algorithms. The time complexities of these algo-
rithms for the various distances are given in Table 3(algorithms
for E2, E3 and Eu were studied more extensively, and there-

7In order to plot the Et distance on the same graph as the
other distances, the tolerances of the Et distance are nor-
malized to distance by dividing the time-tolerance ε by the
average speed of the trajectory.

39

DP Optimal

E2 O(n logn) O(n2)
Eu & E3 O(n2) O(n2 log n)

generic(arbitrary distance) O(n2) O(n3)

Table 3: Time complexities of the DP algorithm and
the Optimal algorithms.

ε(mile) 0.05 0.1 0.2 0.5 1

OP(ms) 13118 32228 42768 42625 42336
DP(ms) 1.535 1.136 0.63 0.641 0.624

Table 4: Comparing the per trajectory average run-
ning time of the optimal(OP) and the DP algo-
rithm(DP), using E2.

fore the time complexities of the generic algorithms were
improved). The DP algorithm has a better performance
asymptotically in all cases. We have also experimentally
compared the running time for the optimal and DP algo-
rithms for the E2 distance(for the other distances, the op-
timal algorithms will fall farther behind the DP heuristic).
The experimental results are summarized in Table 4. As the
results indicate, for the average trajectory in our dataset, the
DP algorithm is between 8546 and 67846 times faster than
the optimal algorithm, with the advantage of DP increasing
with the tolerance ε.
In conclusion, the reduction obtained by the optimal al-
gorithm is several times better than the reduction of the DP
heuristic. However, the storage savings of both methods is
over 90%. But, the DP algorithm is approximately 104 times
faster than the optimal algorithm.

6. RELATED WORK
Line simplification has been well-studied from various per-
spectives: geographic information systems [8, 18]; digital im-
age analysis[15]; and computational geometry[3, 6]. There
are two variants of the problem: (1). min-# problem – given
a tolerance ε, compute an approximation of original polyg-
onal chain (polyline) C, with smallest number of vertices
kmin; and (2). min-ε problem – given a number of vertices
k (for the reduced polyline), compute an approximation of
the original polyline C with at most k vertices and minimal
error εmin. Our approach to the trajectory reduction is a
min-# problem, since our goal was to to obtain a reduction
which ensures a bound on the error of the answer to the
important spatio-temporal queries for all the trajectories in
a moving objects database.
Most of the works on line simplification [3, 6] follow the
graph-theoretic approach, as introduced by Imai and Iri [16].
The optimal algorithms for simplifying 2D polygonal chains
run in O(n2) time for any Euclidian metrics (O(n4/3+δ) for
L1 and L∞ metrics[3]). As we have demonstrated, for our
problem domain Douglas-Peuker algorithm produces simpli-
fication results which are very close to the optimal ones [6]
except for Et, and it has much better running time.
Data compression is a very popular topic in the database
research (e.g. [12, 25]). The techniques are targeted to-
wards reduced storage requirements and improved I/O per-
formance. When it comes to generating the answers to the
queries, there are two main categories of approaches: 1. The
data is decompressed when answering a query [7]; and 2.

The compressed data is used to answer the query, and the
answer contains some error [11, 5, 10]. Our approach is lossy
(i.e we do not recover the original trajectories after simplifi-
cation) and we aim at utilizing the reduced/ simplified tra-
jectories to get faster response. Thus, our results cannot
be directly compared to the first category of works above,
which decompress the data when answering the queries. As
an example of the second category, recently wavelets have
become a popular paradigm for data reduction which pro-
vides fast and “reasonably approximate” answer to queries
[5, 10]. The original data is reduced to compact sets of
coefficients (wavelet synopses) which are used to answer the
queries. The main difference with our approach is that these
works either do not ensure a bound on the error to the query
answers or ensure an asymptotic/ probabilistic bounds on
the error. Similar observation holds for the works which use
histograms or sampling to compress the data and provide
a reasonably accurate answer to the queries ([1] provides a
survey of several data reduction techniques). In contrast, in
our approach we address the min-# problem but we ensure
a deterministic bound on the error of the answers to the
spatio-temporal queries.
A good survey on location modelling is provided in [21].
Moving objects databases have actively been studied from
several aspects: 1. modelling and querying [9, 23]; 2. in-
dexing in primal or dual space [2, 17]; 3. uncertainty and
its impact on the queries [19, 22]. However, to the best
of our knowledge, none of these works addressed the issue
of simplification from the aspect of storage and processing
savings.

7. CONCLUSIONS AND FUTURE WORK
In this paper we addressed the problem of spatio-temporal
data reduction, particularly the reduction of sets of (x, y, t)
records aggregated into trajectories. The data reduction is
by line simplification, a technique that guarantees bounds
on the error of the approximated trajectories. Experimental
results have shown that when an error of 0.1 mile is al-
lowed, the average trajectory is reduced by more than 99%.
Unexpectedly, the bounded-error approximation may pro-
duce answers to queries for which the error is unbounded.
In other words, even though the approximation is bounded-
error, there are query types that when posed on this approxi-
mation produce answers whose error is unbounded. It turns
out that the type of approximations for which this unde-
sirable phenomenon, called unsoundness, arises depends on
the distance used to approximate the trajectories and the
type of spatio-temporal query. For example, the Euclidean
distances (in two and three dimensions) are unsound for the
query that asks ”where is a particular moving object at a
given time”, i.e. the query, when posed on the simplified
trajectory, may produce an answer which is arbitrarily far
from the answer to the same query posed on the original
trajectory. In our opinion, soundness is a new important
concept in database research. This paper provides a classi-
fication of (approximation-distance, query-type) pairs into
sound and unsound sets.
We also discussed the aging of trajectories, namely pro-
ducing increasingly compact (but also coarser) approxima-
tions of trajectories over time. Here an interesting phe-
nomenon was discovered, namely that the optimal simpli-
fication algorithm (i.e. the one that produces minimum-size
trajectories for a given error bound) is ”aging-unfriendly”

40

in the sense that it cannot be naturally used in aging. In
contrast, the DP heuristic, which provides good but not op-
timal approximations, is “friendly”. This concept of aging-
friendliness is explained carefully in section 4, we believe
that it will also prove important in other types of approxi-
mations. This is the subject of future work.
Finally, we compared experimentally the performance of
the optimal algorithm versus the DP heuristic. We have
shown that both achieve a data-reduction of at least 90%
even for an approximation-error tolerance of 0.05 miles or
less, but the optimal algorithm saves over 98%. The exact
storage saving of each algorithm depends both, on the dis-
tance and on the approximation-error tolerance. However,
experimental results show that the DP heuristic on trajecto-
ries with thousands of (x, y, t) records is at least 10,000 time
faster than the optimal algorithm. We have also shown that
savings of line simplification outperforms wavelets.

8. REFERENCES
[1] Special issue on data reduction techniques. In IEEE Data

Engineering, volume 20. 1998.
[2] A. K. Agarwal, L. Arge, and J. Erickson. Indexing moving

points. In 19th ACM PODS Conference, 2000.
[3] P.K. Agarwal and K. R. Varadarajan. Efficient algorithms

for approximating polygonal chains. Discrete &
Computational Geometry, 23:273–291, 2000.

[4] Helmut Alt and Leonidas J. Guibas. Discrete geometric
shapes: Matching, interpolation, and approximation A
survey. Technical Report B 96-11, 1996.

[5] Kaushik Chakrabarti, Minos Garofalakis, Rajeev Rastogi,
and Kyuseok Shim. Approximate query processing using
wavelets. In VLDB 2000, Septermber 2000.

[6] W. Chan and F. Chin. Approximation of polygonal curves
with minimum number of line segments or minimum error.
International Journal of Computational Geometry
Applications, 6:50–77, 1996.

[7] Zhiyuan Chen, Johannes Gehrke, and Flip Korn. Query
optimization in compressed database systems. In SIGMOD
2001, pages 271–282. ACM Press, 2001.

[8] D. Douglas and T. Peuker. Algorithms for the reduction of
the number of points required to represent a digitised line
or its caricature. The Canadian Cartographer,
10(2):112–122, 1973.

[9] L. Florizzi, R. H. Gutting, E. Nardelli, and M. Schneider. A
data model and data structures for moving objects
databases. In ACM SIGMOD, 2000.

[10] M. Garofalakis and P. B. Gibbons. Wavelet synopses with
error guarantees. In ACM SIGMOD, 2002.

[11] P. B. Gibbons, Y. Matias, and V. Poosala. Fast incremental
maintenance of approximate histograms. In VLDB, 1997.

[12] G. Graefe and L. D. Shapiro. Data compression and
database performance. In Proc. ACM/IEEE-CS Symp. on
Applied Computing, 1991.

[13] V. Hardle, G. Kerkyacharian, D. Picard, and A. Tsybakov.
Wavelets, Approximation, and Statistical Applications.
Springer, 1998.

[14] J. Hershberger and J. Snoeyink. Speeding up the
douglas-peucker line-simplification algorithm. In the 5th
Int. Symp. on Spatial Data Handling, 1992.

[15] J. D. Hobby. Polygonal approximations that minimize the
number of inflections. In ACM-SIAM SODA, 1993.

[16] H. Imai and M. Iri. Polygonal approximations of a
curve-formulations and algorithms. In Computational
Morphology, pages 71–86. 1988.

[17] D. Kollios, D. Gunopulos, and V. J. Tsotras. On indexing
mobile objects. In 18th ACM PODS Conference, 1999.

[18] R. McMaster. Automated line generalization.
Cartographica, 24(2):74–111, 1987.

[19] D. Pfoser and C. Jensen. Capturing the uncertainty of
moving objects representation. In SSDB, 1999.

[20] D. Pfoser, C. S. Jensen, and Y. Theodoridis. Novel
approaches in query processing for moving object
trajectories. In VLDB, 2000.

[21] Evaggelia Pitoura and George Samaras. Locating objects in
mobile computing. IEEE TKDE, 13(4), 2001.

[22] G. Trajcevski, O. Wolfson, F. Zhang, and S. Chamberlain.
The geometry of uncertainty in moving objects databases.
In the 8th EDBT, 2002.

[23] M. Vazirgiannis and O. Wolfson. A spatiotemporal model
and language for movign objects on road networks. In
MOBIDE, 2001.

[24] M. Vlachos, G. Kollios, and D. Gunopulos. Discovering
similar multi-dimensional trajectories. In the 18th ICDE,
San Jose, California, 2002.

[25] T. Westmann, D. Kossmann, S. Helmer, and G. Moerkotte.
The implementation and performance of compressed
databases. SIGMOD Record, (3), 2000.

APPENDIX

A. APPENDIX : PROOFS

A.1 Proof Sketch of Theorem 1
Given two distances M1 ≤ M2, for every trajectory T
and every tolerance ε1, if T

′ is a ε-simplification of T with
respect to M1, i.e. T

′ ∈ S(T, ε,M1), then T ′ ∈ S(T, ε,M2).
So, if M2 is sound for Q with error bound δ = f(ε), M1 is
also sound for Q with the same error bound δ.

A.2 Proof Sketch of Theorem 2
Assume that M is sound for where at. For an arbitrary
trajectory T and an arbitrary tolerance ε, let T ′ be an ε-
simplification of T with respect to M . If M is sound for
where at, then for every point (x′, y′, t) ∈ T ′, there is a point
(x, y, t) ∈ T such that the Euclidean distance between (x, y)
and (x′, y′) is less than ε.
Let P be a polygon. Consider the intersect(T ′, P, t1, t2)
query. If it returns true, then there exists a point (x′, y′, t′)
such that (x′, y′) ∈ P ∩ T ′ and t′ ∈ [t1, t2]. Due to the
soundness of M for where at, there is a point (x, y, t′) ∈ T
such that (x, y) is ε close to (x′, y′) . This means that (x, y)
is no further than ε from {P∪ interior of P}.
Conversely, suppose that the intersect query returns false.
That means that T ′ is outside of P . Therefore, every point
of T is either outside of P or within ε of a side of P .
Consider the nearest neighbor query. Let O be an arbi-
trary set of trajectories. Let l(o, T, t) denote the distance
between some trajectory o ∈ O and the trajectory T at time
t. Let o′ and o be the nearest neighbors of T ′ and T respec-
tively.
Based on the soundness of where at and the triangle in-
equality, we have:

|l(o′, T, t)− l(o′, T ′, t)| ≤ ε (1)

|l(o, T, t)− l(o, T ′, t)| ≤ ε (2)

Due to the fact that o′ is the nearest neighbor of T ′ at time
t and o is the nearest neighbor of T :

l(o′, T ′, t) ≤ l(o, T ′, t) (3)

l(o, T, t) ≤ l(o′, T, t) (4)

41

Based on (3), we can open the absolute value in inequality
(2) and obtain l(o′, T ′, t) ≤ l(o, T, t) + ε. Similarly to this
deduction, we obtain l(o, T, t) ≤ l(o′, T ′, t)+ε. Putting them
together, we obtain |l(o, T, t)− l(o′, T ′, t)| ≤ ε.
In the above proof, we assume that the trajectories of O
are not simplified. If they are, a similar methodology can
be used to prove that error of the nearest neighbor query
answer is at most 2ε.
Now, assume that M is not sound for where at. We will
show that M is also not sound for the intersect and near-
est neighbor queries. There exists some ε such that for every
δ there exist a trajectory T and a time t such that error of
the where at at time t is bigger than δ. We can find a poly-
gon P such that T ′ is inside P at time t, but T is more than
δ away from P . Thus, if E is not sound for where at, it is
also not sound for intersect query.
Similarly, we can prove that at some time t if the error of
the where at is unbounded, the error of the nearest neighbor
is also unbounded.

where at(T ′, 1) = (5, 0)

(0,0,0)

(10,0,1)

(10,0,2)

t

x

(a) Counter example for E3

when at(T ′, 1, 0) = 5.5

(0,0,0)

(1,0,10)
(2,0,11)t

x

(b) Counter example for Eu

Figure 5: Counter examples. (The original trajec-
tories are drawn in solid lines and simplifications in
dashed lines.)

A.3 Proof Sketch of Theorem 3
Consider the following counterexample. Assume that an
object m moves along the x-axis. For every tolerance ε and
every answer error bound δ, suppose that the start location
and time is (0, 0, 0) and since then m moves 10δ miles in
ε minutes then stops there in next ε minutes. Then we
have trajectory that represents the motion of m as T =
〈p1(0, 0, 0), p2(10δ, 0, ε), p3(10δ, 0, 2ε)〉. Figure 5(a) shows an
instance of this counterexample with ε = 1 and δ = 1. T
can be simplified by E3 and ε as T ′ = 〈(0, 0, 0), (10δ, 0, 2ε)〉.
Then dist(where at(T, ε), where at(T ′, ε))
= dist(10δ, 0), (5δ, 0)) = 5δ > δ.

A.4 Proof Sketch of Theorem 4
The Euclidean uniform distance Eu requires that any pair
of points 〈(x, y, t)(x′, y′, t)〉 has a Euclidean distance not
greater than ε when they are projected onto the X-Y Eu-
clidean space. Since (x, y) is uniquely determined by t, we
have where at(T ′, t) = (x′(t), y′(t)) and where at(T, t) =

(x(t), y(t)) for any time t, then
dist(where at(T, t), where at(T ′, t)) ≤ ε. Let δ = ε and we
have proven the theorem.

A.5 Proof Sketch of Theorem 5
A counter-example is as follows. Assume that an object

m along the x-axis. For every tolerance ε and every an-
swer error bound δ, there exists a trajectory T with three
points 〈p1(0, 0, 0), p2(ε, 0, 10δ), p3(2ε, 0, 11δ)〉. Figure 5(b)
shows an instance of this counterexample with ε = 1 and
δ = 1. Consider an Eu ε-simplification T ′ consists of two
points p1 and p3. If we query when at(T, ε, 0), the answer
is 10δ, while when at(T ′, ε, 0) = 5.5δ. So, the distance is
4.5δ > δ.

A.6 Proof Sketch of Theorem 6
Let t = when at(T, x, y) and t′ = when at(T ′, x, y). By
the definition of Et, every point in every trajectory T and
its closet point in the simplification T ′ are bounded by ε
in their time difference. Remember that when at is defined
only when (x, y) is on the route of T and T ′. Since T ′ is a
ε-simplification of T according to Et, |t− t′| ≤ ε.

A.7 Proof Sketch of Theorem 7
We prove this theorem using the counter-example of The-
orem 3. Clearly, that simplification is also an Et simplifi-
cation. However, the answer error is unbound, as we have
illustrated in the proof of theorem 3.

A.8 Proof Sketch of Theorem 8
Let ε be an arbitrary positive real number. Consider a
spatial join between two arbitrary trajectories T1 and T2.
Let T ′

1 and T ′
2 be the ε-simplifications of T1 and T2 with re-

spect to M , i.e. M(T1, T
′
1) ≤ ε and M(T2, T

′
2) ≤ ε. We will

show that |D(T1, T2)−D(T ′
1, T

′
2)| ≤ ε for all the spatial joins

whose distance functions satisfy the conditions of the theo-
rem. First, D(T1, T

′
1) ≤ ε and D(T2, T

′
2) ≤ ε because M ≤

D. Meanwhile, since D is a metric, D(T ′
1, T

′
2) < D(T1, T

′
1)+

D(T1, T
′
2) ≤ D(T1, T

′
1)+D(T1, T2)+D(T2, T

′
2), based on the

triangle inequality. Thus,D(T ′
1, T

′
2)−D(T1, T2) ≤ D(T1, T

′
1)+

D(T2, T
′
2) ≤ 2ε. Similarly, we have D(T1, T2)−D(T ′

1, T
′
2) ≤

2ε.

A.11 Proof Sketch of Theorem 11
The theorem is trivially true for the trajectory with only
two or three vertices. For the trajectory T with (n > 3) ver-
tices, either it is simplified as a straight line, or it is divided
at the vertex with furthermost distance and the simplifica-
tion processes repeat on the two sub-trajectories, using the
DP algorithm. Note that the vertex with furthermost dis-
tance is still the furthermost one of the simplification, so the
simplification on simplification will follow the same division
vertex and the same sub-trajectories as those of simplifi-
cation of the original one. If ε1 < ε2, repeat the process
recursively, we get S(T, ε2, E) = S(S(T, ε1, E), ε2, E)).

42

