
The Geometry of Uncertainty
in Moving Objects Databases

Goce Trajcevski1, Ouri Wolfson1,2,�, Fengli Zhang1, and Sam Chamberlain3

1 University of Illinois at Chicago, Dept. of CS
{gtrajcev,wolfson,fzhang}@cs.uic.edu

2 Mobitrac, Inc., Chicago
3 Army Research Laboratory, Aberdeen Proving Ground, MD wildman@arl.mil

Abstract. This work addresses the problem of querying moving ob-
jects databases. which capture the inherent uncertainty associated with
the location of moving point objects. We address the issue of model-
ing, constructing, and querying a trajectories database. We propose to
model a trajectory as a 3D cylindrical body. The model incorporates
uncertainty in a manner that enables efficient querying. Thus our model
strikes a balance between modeling power, and computational efficiency.
To demonstrate efficiency, we report on experimental results that relate
the length of a trajectory to its size in bytes. The experiments were
conducted using a real map of the Chicago Metropolitan area.
We introduce a set of novel but natural spatio-temporal operators which
capture uncertainty, and are used to express spatio-temporal range
queries. We also devise and analyze algorithms to process the opera-
tors. The operators have been implemented as a part of our DOMINO
project.

1 Introduction and Motivation

Miniaturization of computing devices, and advances in wireless communication
and sensor technology are some of the forces that are propagating computing
from the stationary desktop to the mobile outdoors. Important classes of new
applications that will be enabled by this revolutionary development include lo-
cation based services, tourist services, mobile electronic commerce, and digital
battlefield. Many existing applications will also benefit from this development:
transportation and air traffic control, weather forecasting, emergency response,
mobile resource management, and mobile workforce. Location management, i.e.
the management of transient location information, is an enabling technology for
all these applications. It is also a fundamental component of other technologies
such as fly-through visualization, context awareness, augmented reality, cellular
communication, and dynamic resource discovery.

Database researchers have addressed some aspects of the problem of model-
ing and querying the location of moving objects. Largest efforts were made in
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the area of access methods. Aside from a purely spatial ([8] surveys 50+ struc-
tures) and temporal databases [27], there are several recent results which tackle
various problems of indexing spatio-temporal objects and dynamic attributes
[1,12,13,17,22,28,30,31]. Representing and querying the location of moving ob-
jects as a function of time is introduced in [24], and the works in [36,37] address
policies for updating and modeling imprecision and communication costs. Mod-
eling and querying location uncertainties due to sampling and GPS imprecision
is presented in [16]. Algebraic specifications of a system of abstract data types,
their constructors and a set of operations are given in [4,6,9].

In this paper we deal in a systematic way with the issue of uncertainty of
the trajectory of a moving object. Uncertainty is an inherent aspect in databases
which store information about the location of moving objects. Due to continuous
motion and network delays, the database location of a moving object will not
always precisely represent its real location. Unless uncertainty is captured in the
model and query language, the burden of factoring uncertainty into answers to
queries is left to the user.

Traditionally, the trajectory of a moving object was modeled as a polyline in
three dimensional space (two dimensions for geography, and one for time). In this
paper, in order to capture uncertainty we model the trajectory as a cylindrical
volume in 3D. Traditionally, spatio-temporal range queries ask for the objects
that are inside a particular region, during a particular time interval. However,
for the moving objects one may query the objects that are inside the region
sometime during the time interval, or for the ones that are always inside during
the time interval. Similarly, one may query the objects that are possibly inside
the region or for the ones that are definitely there. For example, one may ask
queries such as:
Q1: “Retrieve the current location of the delivery trucks that will possibly be inside a
region R, sometime between 3:00PM and 3:15PM”.
Q2: “Retrieve the number of tanks which will definitely be inside the region R sometime
between 1:30PM and 1:45PM.”.
Q3: “Retrieve the police cars which will possibly be inside the region R, always between
2:30AM and 2:40AM”.
We provide the syntax of the operators for spatio-temporal range queries, and
their processing algorithms. It turns out that these algorithms have a strong
geometric flavor. We also wanted to determine whether for realistic applications
the trajectories database can be stored in main memory. We generated over
1000 trajectories using a map of Chicagoland and analyzed their average size
– approximately 7.25 line segments per mile. Thus, for fleets of thousands of
vehicles the trajectories database can indeed be stored in main memory.

The model and the operators that we introduce in this paper have been
implemented in our DOMINO system. The operators are built as User Defined
Functions (UDF) in Informix IDS2000. A demo version of the DOMINO system
is available at http://131.193.39.205/mapcafe/mypage.html. The operators
are built as User Defined Functions (UDF) in Informix IDS2000. Our main
contributions can be summarized as follows:
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1. – We introduce a trajectory model with uncertainty, and its construction
based on electronic maps;
2. – We experimentally evaluate the average length of a trajectory and determine
that it is about 7.25 line segments per mile;
3. – We introduce a set of operators for querying trajectories with uncertainty.
We provide both linguistic constructs and processing algorithms, and show that
the complexity of the algorithms is either linear or quadratic.

The rest of the article is structured as follows. In section 2 we define the
model of a trajectory and show how it can be constructed based on electronic
maps. Section 3 discusses the experiments to determine the average size of a
trajectory. Section 4. defines the uncertainty concepts for a trajectory. In Section
5. we present the syntax and the semantics of the new operators for querying
trajectories with uncertainty. Section 6. provides the processing algorithms and
their analysis. Section 7 concludes the paper, positions it in the context of related
work, and outlines the future work.

2 Representing and Constructing the Trajectories

In this section we define our model of a trajectory, and we describe how to
construct it from the data available in electronic maps. In order to capture the
spatio-temporal nature of a moving object we use the following:

Definition 1. A trajectory of a moving object is a polyline in three-dimensional space
(two-dimensional geography, plus time), represented as a sequence of points (x1, y1, t1),
(x2, y2, t2), ..., (xn, yn, tn) (t1 < t2 < ... < tn). For a given a trajectory Tr, its projec-
tion on the X-Y plane is called the route of Tr.

A trajectory defines the location of a moving object as an implicit function of
time. The object is at (xi, yi) at time ti, and during each segment [ti, ti+1], the
object moves along a straight line from (xi, yi) to (xi+1, yi+1), and at a constant
speed.

Definition 2. Given a trajectory Tr, the expected location of the object at a point in
time t between ti and ti+1 (1 ≤ i < n) is obtained by a linear interpolation between
(xi, yi) and (xi+1, yi+1).

Note that a trajectory can represent both the past and future motion of
objects. As far as future time is concerned, one can think of the trajectory as
a set of points describing the motion plan of the object. Namely, we have a set
of points that the object is going to visit, and we assume that in between the
points the object is moving along the shortest path. Given an electronic map,
along with the beginning time of the object’s motion, we construct a trajectory
as a superset of the set of the given – “to-be-visited” – points. In order to explain
how we do so, we need to define an electronic map (or a map, for brevity).



236 Goce Trajcevski, Ouri Wolfson, Fengli Zhang, and Sam Chamberlain

Definition 3. A map is a graph, represented as a relation where each tuple corresponds
to a block with the following attributes:
– Polyline: Each block is a polygonal line segment. Polyline gives the sequence of the
endpoints: (x1, y1), (x2, y2), . . . (xn, yn).
– Length: Length of the block.
– Fid: The block id number.
– Drive Time: Typical drive time from one end of the block to the other, in minutes.
Plus, among others, a set of geo-coding attributes which enable translating between an
(x,y) coordinate and an address, such as “1030 North State St.”:
(e.g. – L f add: Left side from street number.)

Such maps are provided by, among the others, Geographic Data Technology1

Co. An intersection of two streets is the endpoint of the four block – polylines.
Thus, each map is an undirected graph, with the tuples representing edges of
the graph.

The route of a moving object O is specified by giving the starting address or
(x, y) coordinate, namely the start point; the starting time; and the destination
address or (x, y) coordinate, namely the (end point). An external routine, avail-
able in most Geographic Information Systems, which we assume is given a priori,
computes the shortest cost (distance or travel – time) path in the map graph.
This path, denoted P (O), is a sequence of blocks (edges), i.e. tuples of the map.
Since P (O) is a path in the map graph, the endpoint of one block polyline is
the beginning point of the next block polyline. Thus, the route represented by
P (O) is a polyline denoted by L(O). Given that the trip has a starting time, we
compute the trajectory by computing for each straight line segment on L(O) ,
the time at which the object O will arrive to the point at the end of the segment.
For this purpose, the only relevant attributes of the tuples in P (O) are Polyline
and Drive Time.

Finally, let us observe that a trajectory can be constructed based on past
motion. Specifically, consider a set of 3D points (x1, y1, t1), (x2, y2, t2), . . . ,
(xn, yn, tn) which were transmitted by a moving object periodically, during its
past motion. One can construct a trajectory by first “snapping” the points on
the road network, then simply connecting the snapped points with the shortest
path on the map.

3 Experimental Evaluation of Trajectory Sizes

In this section we describe our experiments designed to evaluate the number of
line segments per trajectory.

As a part of out DOMINO project we have constructed 1141 trajectories
based on the electronic map of 18 counties around Chicagoland. The map size
is 154.8MB, and has 497,735 records representing this many city-blocks.

The trajectories were constructed by randomly choosing a pair of end points,
and connecting them by the shortest path in the map (shortest in terms of the

1 (www.geographic.com)
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Fig. 1. Number of segments in real - map trajectories

Drive Time) Our results are depicted on Figure 1. The length of the routes was
between 1 and 289 miles, as shown on the left graph.

The right graph represents the number of segments per trajectory, as a func-
tion of the length of the route. We observed a linear dependency between the
“storage requirements” (number of segments) and the length of a route.

The average number of segments per mile turned out to be 7.2561. Assuming
that a trajectory point (x, y, t) uses 12 bytes and that each vehicle from a given
fleet (e.g. a metropolitan delivery company), drives a route of approximately 100
miles, we need ≈ 10K bytes for a trajectory. Then the storage requirements for
all the trajectories of a fleet of 1000 vehicles is ≈ 10 MB. This means that the
trajectories of the entire fleet can be kept in the main memory.

4 Uncertainty Concepts for Trajectories

An uncertain trajectory is obtained by associating an uncertainty threshold r
with each line segment of the trajectory. For a given motion plan, the line seg-
ment together with the uncertainty threshold constitute an “agreement” between
the moving object and the server. The agreement specifies the following: the
moving object will update the server if and only if it deviates from its expected
location (according to the trajectory) by r of more. How does the moving ob-
ject compute the deviation at any point in time? Its on-board computer receives
a GPS update every two seconds, so it knows its actual location. Also, it has
the trajectory, so by interpolation it can compute its expected location at any
point in time. The deviation is simply the distance between the actual and the
expected location.
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Definition 4. Let r denote a positive real number and Tr denote a trajectory. An
uncertain trajectory is the pair (Tr, r). r is called the uncertainty threshold.

Definition 5. Let Tr ≡ (x1, y1, t1), (x2, y2, t2), ..., (xn, yn, tn) denote a trajectory and
let r be the uncertainty threshold. For each point (x, y, t) along T , its r-uncertainty area
(or the uncertainty area for short) is a horizontal circle with radius r centered at
(x, y, t), where (x,y) is the expected location at time t ∈ [t1, tn].

Note that our model of uncertainty is a little simpler than the one proposed
in [16]. There, the uncertainty associated with the location of an object traveling
between two endpoints of a line segment is an ellipse with foci at the endpoints.

Definition 6. Let Tr ≡ (x1, y1, t1), (x2, y2, t2), ..., (xn, yn, tn), be a trajectory, and
let r be an uncertainty threshold. A Possible Motion Curve PMCT r is any continuous
function fPMCT r : Time → R2 defined on the interval [t1, tn] such that for any t ∈
[t1, tn], fPMCT r(t) is inside the uncertainty area of the expected location at time t.

Intuitively, a possible motion curve describes a route with its associated
times, which a moving object may take, without generating an update. An ob-
ject does not update the database as long as it is on some possible motion curve
of its uncertain trajectory (see Figure 2). We will refer to a 2D projection of a
possible motion curve as a possible route.

Definition 7. Given
an uncertain trajectory (Tr, r) and two end-points (xi, yi, ti), (xi+1, yi+1, ti+1) ∈ Tr,
the trajectory volume of Tr between ti and ti+1 is the set of all the points (x, y, t)
such that (x, y, t) belongs to a possible motion curve of Tr and ti ≤ t ≤ ti+1. The 2D
projection of the trajectory volume is called an uncertainty zone.

Definition 8. Given a trajectory Tr ≡ (x1, y1, t1), (x2, y2, t2), ..., (xn, yn, tn) and an
uncertainty threshold r, the trajectory volume of (Tr, r) is the set of all the trajectory
volumes between ti and ti+1 (i = 1, , . . . , (n − 1)).

Definitions 6, 7 and 8, are illustrated in Figure 2. Viewed in 3D, a trajectory
volume between t1 and tn is sequence of volumes, each bounded by a cylindrical
body. The axis of each is the vector which specifies the 3D trajectory segment,
and the bases are the circles with radius r in the planes t = t begin and t =
t end. Observe that the cylindrical body is different from a tilted cylinder. The
intersection with of a tilted cylinder with a horizontal plane (parallel to the
(X,Y) plane) yields an ellipse, whereas the intersection of our cylindrical body
with such a plane yields a circle. Thus, the trajectory volume between two points
resembles a set of circles of the uncertainty areas, stacked on top of each other.
Let vxi and vyi denote the x and y components of the velocity of a moving object
along the i-th segment of the route (i.e. between (xi, yi) and (xi+1, yi+1)). It can
be shown [32] that the trajectory volume between ti and ti+1 is the set of all the
points which satisfy: ti ≤ t ≤ ti+1 and (x−(xi+vxi ·t))2+(y−(yi+vyi ·t))2 ≤ r2
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Fig. 2. Possible motion curve and trajectory volume

5 Querying Moving Objects with Uncertainty

In this section we introduce two categories of operators for querying moving
objects with uncertainty. The first category, discussed in section 5.1, deals with
point queries and it consists of two operators which pertain to a single trajectory.
The second category, discussed in section 5.2, is a set of six (boolean) predicates
which give a qualitative description of a relative position of a moving object
with respect to a region, within a given time interval. Thus, each one of these
operators corresponds to a spatio-temporal range query.

5.1 Point Queries

The two operators for point queries are defined as follows:
• Where At(trajectory Tr, time t) – returns the expected location on the route
or Tr at time t.
• When At(trajectory Tr, location l)– returns the times at which the object on
Tr is at expected location l. The answer may be a set of times, in case the moving
object passes through a certain point more than once. If the location l is not on
the route of the trajectory Tr, we find the set of all the points C on this route
which are closest to l. The function then returns the set of times at which the
object is expected to be at each point in C.

The algorithms which implement the point query operators are straightfor-
ward. The Where at operator is implemented in O(log n) by a simple binary
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search, where n is the number of line segments of the trajectory. The When at
operator is implemented in linear time by examining each line segment of a tra-
jectory. As we demonstrated in Section 3, any reasonable trajectory has no more
than several thousand line segments. It can be stored in the main memory and
the processing time of each one of the above operators is acceptable.

5.2 Operators for Spatio-temporal Range Queries

The second category of operators is a set of conditions (i.e. boolean predicates).
Each condition is satisfied if a moving object is inside a given region R, during a
given time interval [t1, t2]. Clearly, this corresponds to a spatio-temporal range
query. But then, why more than one operator? The answer is threefold: 1. – The
location of the object changes continuously, hence one may ask if the condition
is satisfied sometime or always within [t1, t2]; 2. – The object may satisfy the
condition everywhere or somewhere within the region R; 3. – Due to the un-
certainty, the object may possibly satisfy the condition or it may definitely do
so.

Thus, we have three domains of quantification, with two quantifiers in each.
Combining all of them would yield 23 ·3! = 48 operators. However, some of them
are meaningless in our case. In particular, it makes no sense to ask if a point
object is everywhere within a 2D region R (we do not consider “everywhere in all
the route segments within a region” in this paper). Hence we have only 22 ·2! = 8
operators.

A region is a polygon2. In what follows, we let PMCT denote a possible
motion curve of a given uncertain trajectory T = (Tr, r):
• Possibly Sometime Inside(T ,R,t1,t2) – is true iff there exist a possible motion
curve PMCT and there exists a time t ∈ [t1, t2] such that PMCT at the time
t, is inside the region R. Intuitively, the truth of the predicate means that the
moving object may take a possible route, within its uncertainty zone, such that
the particular route will intersect the query polygon R between t1 and t2.
• Sometime Possibly Inside(T ,R,t1,t2) – is true iff there exist a time t ∈ [t1, t2]
and a possible motion curve PMCT of the trajectory T , which at the time t is
inside the region R. Observe that this operator is semantically equivalent to Pos-
sibly Sometime Inside. Similarly, it will be clear that Definitely Always Inside is
equivalent to Always Definitely Inside. Therefore, in effect, we have a total of 6
operators for spatio-temporal range queries.
• Possibly Always Inside(T ,R,t1,t2) – is true iff there exists a possible motion
curve PMCT of the trajectory T which is inside the region R for every t in [t1, t2].
In other words, the motion of the object is such that it may take (at least one)
specific 2D possible route, which is entirely contained within the polygon R,
during the whole query time interval.
• Always Possibly Inside(T ,R,t1,t2) – is true iff for every time point t ∈ [t1, t2],
there exists a PMCT which will intersect the region R at t.

2 We will consider simple polygons (c.f. [18,19]) and without any holes.
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Fig. 3. Possible positions of a moving point with respect to region Ri

Figure 3 illustrates (a 2D projection of) a plausible scenario for each of the
three predicates above (dashed lines indicate the possible motion curve(s) due
to which the predicates are satisfied; solid lines indicate the routes and the
boundaries of the uncertainty zone).

The next theorem indicates that one of the last two predicates is stronger
than the other:

Theorem 9. Let Tr = (T, r) denote an uncertain trajectory; R denote a polygon; and
t1 and t2 denote two time points. If Possibly Always Inside(T ,R,t1,t2) is true, then
Always Possibly Inside(T ,R,t1,t2) is also true3.

Note that the converse of Theorem 9 is not true. As illustrated on Figure 3, the
predicate Always Possibly Inside maybe satisfied due to two or more possible
motion curves, none of which satisfies Possibly Always Inside by itself. However,
as the next theorem indicates, this situation cannot occur for a convex polygon:

Theorem 10. Let Tr = (T, r) denote an uncertain trajectory; R denote a convex
polygon; and t1 and t2 denote two time points. Possibly Always Inside(T ,R,t1,t2) is
true, iff Always Possibly Inside(T ,R,t1,t2) is true.

The other three predicates are defined as follows:
• Always Definitely Inside(T ,R,t1,t2) – is true iff at every time t ∈ [t1, t2], every
possible motion curve PMCT of the trajectory T , is in the region R. In other
words, no matter which possible motion curve the object takes, it is guaranteed
to be within the query polygon R throughout the entire interval [t1, t2]. Note
that this predicate is semantically equivalent to Definitely Always Inside.
• Definitely Sometime Inside(T ,R,t1,t2) – is true iff for every possible motion
curve PMCT of the trajectory T , there exists some time t ∈ [t1, t2] in which
the particular motion curve is inside the region R. Intuitively, no matter which
possible motion curve within the uncertainty zone is taken by the moving object,
it will intersect the polygon at some time between t1 and t2. However, the time
of the intersection may be different for different possible motion curves.
3 Due to lack of space, we omit the proofs of the Theorems and the Claims in this
paper (see [32]).
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• Sometime Definitely Inside(T ,R,t1,t2) – is true iff there exists a time point
t ∈ [t1, t2] at which every possible route PMCT of the trajectory T is inside
the region R. Satisfaction of this predicate means that no matter which possible
motion curve is taken by the moving object, at the specific time t the object will
be inside query polygon.

R1

R2
R3

a.) Definitely_Always_Inside R1,
between t1 and t2

b.) Definitely_Sometime_Inside R2,
between t1 and t2

c.) Sometime_Definitely_Inside R3,
between t1 and t2

Fig. 4. Definite positions of a moving point with respect to region Ri

The intuition behind the last three predicates is depicted on Figure 4.
Again we observe that Sometime Definitely Inside is stronger than Defi-

nitely Sometime Inside:

Theorem 11. Let Tr = (T, r) denote an uncertain trajectory; R denote a polygon;
and t1 and t2 denote two time points. If Sometime Definitely Inside(T ,R,t1,t2) is true,
then Definitely Sometime Inside(T ,R,t1,t2) is also true.

However, the above two predicates are not equivalent even if the polygon R is
convex. An example demonstrating this is given in of Figure 4(b). The polygon
R2 satisfies Definitely Sometime Inside, but since it does not contain the uncer-
tainty area for any time point, it does not satisfy Sometime Definitely Inside.

Note that the proofs of Theorems 9 and 11 are straightforward consequence
of ∃x∀yP (x, y) → ∀y∃xP (x, y) (where P denotes “the property”). However,
Theorem 10 is specific to the problem domain.

Always_Definitely_Inside

Sometime_Definitely_Inside

Definitely_Sometime_Inside

Possibly_Always_Inside

Always_Possibly_Inside

Possibly_Sometime_Inside

Fig. 5. Relationships among the spatiotemporal predicates
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The relationships among our predicates is depicted on Figure 5, where the arrow
denotes an implication. More complex query conditions can be expressed by
composition of the operators. Consider, for example, “Retrieve all the objects
which are possibly within a region R, always between the times the object A
arrives at locations L1 and L2”. This query can be expressed as:

Possibly Always Inside(T,R,When At(TA, L1),When At(TA, L2)).
We have implemented the six spatio-temporal range query operators in our

DOMINO project. The implementation algorithms are described in the next
section, but we conclude this section with a discussion of the user interface.

Fig. 6. Visualization of Possibly Sometime Inside

Figure 6 illustrates the GUI part of the DOMINO project which implements
our operators. It represents a visual tool which, in this particular example, shows
the answer to the query: “Retrieve the trajectories which possibly intersect the
region sometime between 12:15 and 12:30”. The figure shows three trajectories
in the Cook County, Illinois, and the query region (polygon) represented by the
shaded area. The region was drawn by the user on the screen when entering the
query. Each trajectory shows the route with planned stops along it (indicated by
dark squares). It also shows the expected time of arrival and the duration of the
job (i.e. the stay) at each stop. Observe that only one of the trajectories satisfies
the predicate Possibly Sometime Inside with respect to the polygon. It is the one
with the circle labeled 12:20, the earliest time at which the object could enter
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the query polygon. The other two trajectories fail to satisfy the predicate, each
for a separate reason. One of them will not intersect the polygon ever (i.e. the
polygon is not on the route). Although the other trajectory’s route intersects
the polygon, the intersection will occur at a time which is not within the query
time - interval [12 : 15, 12 : 30].

6 Processing the Range Operators

In this section, for each of the operators we identify the topological properties
which are necessary and sufficient conditions for their truth, and we present
the algorithms which implement them. The complexities of the algorithms we
provide assume relatively straightforward computational geometry techniques.
Some of them may be improved using more sophisticated techniques (c.f. [18,19]),
which we omit for space consideration. We only consider query regions that are
represented by convex polygons4.

Throughout this section, let t1 and t2 be two time-points. Taking time as a
third dimension, the region R along with the query time-interval [t1, t2] can be
represented as a prism PR in 3D space: PR = {(x, y, t) | (x, y) ∈ R∧t1 ≤ t ≤ t2}.
PR is the query-prism.

For the purpose of query processing, we assume an available 3D indexing
scheme in the underlying DBMS, similar to the ones proposed in [17,28,34]. The
insertion of a trajectory is done by enclosing, for each trajectory, each trajectory
volume between ti and ti+1 in a Minimum Bounding Box (MBB). During the
filtering stage we retrieve the trajectories which have a MBB that intersect with
PR. Throughout the rest of this work we focus on the refinement stage of the
processing. Let V Tr denote the trajectory volume of a given uncertain trajectory
T = (Tr, r) between t1 and t2. Also, let V T ′ = V Tr ∩ PR.

Theorem 12. The predicate Possibly Sometime Inside is true iff VT’ �= ∅
To present the processing algorithm, we need the following concept used in

Motion Planning (c.f. [19,23,?]). The operation of Minkowski sum – denoted as
⊕ is described as follows: Let P denote a polygon and dr denote a disk with
radius r. P ⊕ dr is the set of all the points in plane which are elements of {P ∪
interior of P ∪ the points which are in the “sweep” of dr when its center moves
along the edges of P }. Visually, the outer boundary of P ⊕ dr, for a convex
polygon P , will consist of line segments and circle segments by the vertices of P ,
as illustrated on Figure 7. If P has n edges, then the complexity of constructing
the Minkowski sum P ⊕ dr is O(n) ) (c.f. [19]).

In what follows, let TrX,Y denote the projection of the trajectory Tr between
t1 and t2, on the X − Y plane (i.e. its route).

4 Due to lack of space, we do not present the formal treatment of the concave query
polygons. Detailed description is presented in [32].
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P

d r

Fig. 7. Minkowski sum of a polygon with a disk

Algorithm 1. (Possibly Sometime Inside(R, T, t1, t2))
1. Construct the Minkowski sum of R and the disk dr with radius r, where r is the
uncertainty of T .
Denote it R ⊕ dr;
2. If TrX,Y ∩ (R ⊕ r) = ∅
3. return false;
4. else
5. return true;

In other words, V T ′ is nonempty if and only if TrX,Y intersects the expanded
polygon. The complexity of the Algorithm 1 is O(kn) where k is the number of
segments of the trajectory between t1 and t2, and n is the number of edges of
R.

The next Theorem gives the necessary and sufficient condition for satisfaction
of the Possibly Always Inside predicate:

Theorem 13. Possibly Always Inside(T, R, t1, t2) is true if and only if VT’ contains
a possible motion curve between t1 and t2.

The implementation is given by the following:

Algorithm 2. (Possibly Always Inside(R, T, t1, t2))
1. Construct the Minkowski sum of R and the disk dr with radius r, where r is the
uncertainty of T .

Denote it R ⊕ dr;
2. If TrX,Y lies completely inside R ⊕ dr

3. return true;
4. else
5. return false;

The complexity of Algorithm 2 is, again, O(kn).
Recall that we are dealing with convex polygonal regions. As a consequence

of the Theorem 10, we can also use the last algorithm to process the predicate
Always Possibly Inside.

Now we proceed with the algorithms that implement the predicates which
have the Definitely quantifier in their spatial domain.
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Theorem 14. The predicate Definitely Always Inside(Tr,R,t1,t2) is true if an only if
V Tr ∩ PR = V Tr

As for the implementation of the predicate, we have the following:

Algorithm 3. Definitely Always Inside(Tr, R, t1, t2)
1. For each straight line segment of Tr
2. If the uncertainty zone of the segment is not entirely contained in R;
3. return false and exit;
4. return true.

Step 2 above can be processed by checking if the route segment has a distance
from some edge of R which is less than r, which implies a complexity of O(kn)
again.

Theorem 15. Sometime Definitely Inside(T, R, t1, t2) is true if and only if V Tr ∩PR

contains an entire horizontal disk (i.e. a circle along with its interior)

Let us point out that Theorem 15 holds for concave polygon as well [32].
The implementation of the predicate Sometime Definitely Inside is specified

by the following:

Algorithm 4. Sometime Definitely Inside(Tr, R, t1, t2)
1. For each segment of Tr such that TrX,Y ∩ R �= ∅
2. If R contains a circle with radius r centered at some point on TrX,Y ;
3. return true and exit
4. return false

The complexity of Algorithm 4 is again O(kn).
Now we discuss the last predicate. The property of connectivity is commonly

viewed as an existence of some path between two points in a given set. Clearly,
in our setting we are dealing with subsets of R3. Given any two points a and b
in R3, a path from a to b is any continuous function5 f : [0, 1] → R3 such that
f(a) = 0 and f(1) = b. Given two time – points t1 and t2, we say that a set
S ⊆ R3 is connected between t1 and t2 if there exist two points (x1, y1, t1) and
(x2, y2, t2) ∈ S which are connected by a path in S. Thus, we have the following
Theorem for the predicate Definitely Sometime Inside (a consequence of Claim
5 below):

Theorem 16. Definitely Sometime Inside(T, R, t1, t2) is true if and only if VT” =
V Tr \ PR is not connected between t1 and t2.

Claim. If VT” = V Tr \PR is connected between t1 and t2, then there exists a possible
motion curve PMCT between t1 and t2 which is entirely in VT”.

5 There are propositions (c.f. [26]) about the equivalence of the connectedness of a
topological space with the path – connectedness.
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Fig. 8. Processing of Definitely Sometime Inside predicate

Now we present the algorithm that processes the Definitely Sometime Inside
predicate. Let PTr be the uncertainty zone of the trajectory (equivalently, the 2D
projection of V Tr, the trajectory volume). Let PT ′

r be PTr with the uncertainty
areas at t1 and t2 eliminated. Let L be the boundary of PT ′

r. L will consists
of (at most) 2k line segments and k + 1 circular segments (at most one around
the endpoints of each segment). Let L′ = L \ D, where D denotes the two
half-circles which bound the uncertainty areas at t1 and t2. Clearly, L′ consists
of two disjoint “lines” l1 and l2 which are left from the initial boundaries of
the uncertainty zone. Figure 8 illustrates the concepts that we introduced. Note
that the boundary l2 has a circular segment at the end of the first route-segment.
Dashed semi-circles correspond to the boundaries of the uncertainty areas at t1
and t2, which are removed when evaluating the predicate. For the query region
R, we have the path between A on l1 and B on l2 (also the path between F and
G) which makes the predicate true.

Algorithm 5. Definitely Sometime Inside(T, R, t1, t2)
1. If there exists a path P between a point on l1 and one on l2 which consists entirely

of edges of R (or parts thereof) AND P is entirely in PTr’
2. return true and exit
3. return false

It is not hard to see that the complexity of Algorithm 5 is O(kn2).

7 Conclusion, Related Work and Future Directions

We have proposed a model for representing moving objects under realistic as-
sumptions of location uncertainty. We also gave a set of operators which can
be used to pose queries in that context. The model and the operators combine
spatial, temporal, and uncertainty constructs, and can be fully implemented on
top of “off the shelf” existing ORDBMS’s.

Linguistic issues in moving objects databases have been addressed before.
Modeling and querying issues have been addressed from several perspectives.



248 Goce Trajcevski, Ouri Wolfson, Fengli Zhang, and Sam Chamberlain

Sistla et al. [24] introduce the MOST model for representing moving objects
(similar to [22]) as a function of (location, velocity vector). The underlying query
language is nonstandard, and is based on the Future Temporal Logic (FTL).
Similar issues are addressed in [34]. A trajectory model similar to ours is given
in [35] where the authors extend range queries with new operators for special
cases of spatio-temporal range queries. The series of works [4,6,9] addresses the
issue of modeling and querying moving objects by presenting a rich algebra of
operators and a very comprehensive framework of abstract data types. However,
in all the above works there is no treatment of the uncertainty of the moving
object’s location.

As for uncertainty issues, Wolfson et al. [36,37] introduce a cost based ap-
proach to determine the size of the uncertainty area (r in this paper). However,
linguistic and querying aspects are not addressed in these papers. A formal
quantitative approach to the aspect of uncertainty in modeling moving objects
is presented in [16]. The authors limit the uncertainty to the past of the moving
objects and the error may become very large as time approaches now. It is a less
“collaborative” approach than ours – there is no clear notion of the motion plan
given by the trajectory. Uncertainty of moving objects is also treated in [25] in
the framework of modal temporal logic. The difference from the present work is
that here we treat the uncertainty in traditional range queries.

A large body of work in moving objects databases has been concentrated on
indexing in primal [17,22,20,21,28] or dual space [1,12,13]. [30,31] present specifi-
cations of what an indexing of moving objects needs to consider, and generation
of spatial datasets for benchmarking data. These works will be useful in studying
the most appropriate access method for processing the operators introduced in
this paper.

On the commercial side, there is a plethora of related GIS products [33,5,7];
maps with real – time traffic information [11] and GPS devices and manage-
ment software. IBM’s DB2 Spatial Extender [3], Oracle’s Spatial Cartridge [15]
and Informix Spatial DataBlade [29] provide several 2D – spatial types (e.g.
line, polyline, polygon, . . . ); and include a set of predicates (e.g. intersects, con-
tains) and functions for spatial calculations (e.g. distance). However, the existing
commercial products still lack the ability to model and query spatio-temporal
contexts for moving objects.

In terms of future work, a particularly challenging problem is the one of
query optimization for spatio-temporal databases. We will investigate how to
incorporate an indexing schema within the existing ORDBMS (c.f. [2,14]), and
develop and experimentally test a hybrid indexing schema which would pick an
appropriate access method for a particular environment.
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