
Time-Series Prediction with Applications to Traffic and
Moving Objects Databases∗

Bo Xu
Department of Computer Science

University of Illinois at Chicago
Chicago, IL 60607, USA

boxu@cs.uic.edu

Ouri Wolfson
Department of Computer Science

University of Illinois at Chicago
Chicago, IL 60607, USA

wolfson@cs.uic.edu

ABSTRACT
In this paper we explore the application of travel-speed pre-
diction to query processing in Moving Objects Databases.
We propose to revise the motion plans of moving objects
using the predicted travel-speeds. This revision occurs be-
fore answering queries. We develop three methods of doing
this. These methods differ in the time when the motion
plans are revised, and which of them are revised. We ana-
lyze the three methods theoretically and experimentally.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications

General Terms
Algorithms, Performance

Keywords
Time-series Prediction, Spatio-temporal Query, Moving Ob-
jects Databases

1. INTRODUCTION
In this paper we investigate how travel-speed prediction

can be incorporated in Moving Objects Databases (MOD).
Such databases store, among others, the estimated (or ex-
pected) future motion plans of moving objects such as ve-
hicles, pedestrians, aircraft, etc. We examine two types of
queries enabled by a MOD. The first type are point queries
that pertain to the motion of a single specified object. For
example, ”will the object O arrive at its destination by time
t?”. The second type are range queries that retrieve the
moving objects that pass a given region during a given time
interval. For example, ”retrieve the objects (e.g. trucks)

∗Research supported by NSF Grants ITR-0086144, NSF-
0209190, CCR-0070738, and EIA-0000516.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiDE’03, September 19, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-767-2/03/0009 ...$5.00.

that are expected to be within two miles of a given ware-
house W sometime between t1 and t2.”.
Clearly, for vehicles moving on the road network, if t, t1, t2

are in the future, then the answers to the above queries de-
pend on the traffic, or expected travel-speeds, on the roads.
Observe further that what matters is not only the current
travel-speeds, but also the travel-speeds that will exist from
now until the future time t, t1, or t2. And this is exactly
where time-series prediction comes in.
In this paper we assume that the future motion plan of a

moving object is represented by a trajectory. This trajec-
tory defines by a three-dimensional polyline the estimated
(or expected) locations of the object at future time points.
A natural way of incorporating travel-speed prediction is as
follows. Whenever a speed update is received from sensors
on a road segment B (indicating that, for example, the cur-
rent average speed on B is 40 miles/hour), future speeds are
predicted for B. The predicted speeds are used to update all
the trajectories that travel B. We call this approach Speed
Update Triggered Revision (SUTR). SUTR creates a perfor-
mance problem when speed updates are frequent or the size
of the road network is large, since it requires updating of
trajectories for every speed update of every block. Further-
more, the same procedure may be repeated many times even
though there may not be queries against the updated trajec-
tories. A naive alternative to SUTR is to update trajectories
only when answering a query. We call this approach Query
Triggered Revision (QTR). For range queries, however, QTR
creates a performance problem when the database is large
or the query rate is high, since it requires updating of tra-
jectories for every query.
In this paper we propose an approach which avoids any

update to the database when answering a range query. This
approach follows a filter-refinement paradigm. In the filter
stage, the query is relaxed by extending the queried time
interval, such that the answer set retrieved by the relaxed
query contains all the answers that would have been given by
QTR. Then in the refinement stage each retrieved trajectory
is revised in main memory and evaluated against the original
query. We call this approach QTR with Query Relaxation,
or QTR+QR. We will discuss how the queried time interval
is extended in QTR+QR, and will prove that QTR+QR is
”correct” in the sense that it returns the identical answer set
as QTR. We will also compare it with QTR and SUTR in
terms of the extra computational cost introduced by travel-
speed prediction.
The rest of this paper is organized as follows. In section

2, we discuss how a time-series prediction method can be
used to predict travel-speeds of a road segment in real time.
In section 3 we describe the SUTR algorithm and compare
it with query processing without travel-speed prediction. In
section 4 we describe QTR and QTR+QR, and provide a
theoretical and experimental analysis. Finally, the conclu-
sion of this paper is given in Section 5.

2. REAL-TIME TRAVEL-SPEED PREDIC-
TION

We consider only the road segments (namely city blocks)
for which travel-speeds are updated periodically. For ex-
ample, these speed updates may be generated by sensors
deployed on the blocks that compute the average speed of
the vehicles passing by. We call such blocks dynamic blocks.
The other blocks are static, i.e. we don’t have any infor-
mation on their real-time speeds. Currently, only highway
blocks 1 are dynamic, and blocks of any other type are static.
For the purpose of real-time prediction, for each dynamic

block, the system maintains in main memory a history win-
dow that stores the latest h speed updates for that block.
Let T be the period of speed updating, namely a speed data
point is generated every T time units. Then, for each block
the history window is a1, a2, ..., ah−1, ah, where ah repre-
sents the average travel-speed during the last period of T
time units, ah−1 represents the average travel-speed during
the second last period of T time units, and so on. Future
speeds are predicted based on the history window using the
Exponential Smoothing method [1]. Specifically, the one-
step-ahead speed, namely the average travel-speed for the
next T time units, is predicted to be

ah+1 = α

h−1X

k=0

(1− α)kah−k + (1− α)
Ph−1

k=0 ah−k

h

where 0 ≤ α ≤ 1 is the smoothing constant. ah+1 is then
used to generate the two-step-ahead speed ah+2 as if ah+1

is a real value, and so on. For selection of the smoothing
constant α, a widely used technique [1] is to carry out a
sequence of trials on a set of actual historical data using
several different values for the smoothing constant, and then
to select the value of α that minimizes the sum of squared
errors. We adopt this technique in this paper.
In order to keep the predictions realistic, each dynamic

block is associated with a maximum speed. If a predicted
speed is higher than the maximum speed, it is revised down
to the maximum speed. This maximum speed is determined
by the speed limit on the street, although may be taken
to be slightly higher to account for the fact that vehicles
sometimes exceed the speed limit.

3. APPLICATION ON SPATIO-TEMPORAL
QUERY PROCESSING

In a moving object database, the motion plan of an ob-
ject is represented by a trajectory. These trajectories can be
constructed based on the average speeds of each road seg-
ment. When a query regarding future locations of moving
objects is received, trajectories are used for answering. We
call this procedure Query Processing with No Travel-speed

1A highway block is a highway segment between two adja-
cent exits.

Prediction, or QPNTP. In this section we propose to improve
this procedure by incorporation of travel-speed prediction.
The rest of the section is organized as follows. In subsec-
tion 3.1 we define the trajectory model; in subsection 3.2 we
define the spatio-temporal queries and briefly discuss their
processing without travel-speed prediction; in subsection 3.3
we introduce query processing with travel-speed prediction;
and in subsection 3.4 we compare by experiments the accu-
racy of query processing with and without prediction.

3.1 Representing and Constructing Trajecto-
ries

The trajectory model in this subsection is taken from [2].
Definition 1: A trajectory of a moving object is a poly-

line in three-dimensional space (two-dimensional geography,
plus time), represented as a sequence of points (x1, y1, t1),
(x2, y2, t2), ..., (xn, yn, tn) (t1 < t2 < ... < tn).
A trajectory defines the location of a moving object as an
implicit function of time. The object is at (xi, yi) at time
ti, and during each time interval [ti, ti+1], the object moves
along a straight line from (xi, yi) to (xi+1, yi+1), and at a

constant speed given by vi =

√
(xi+1−xi)

2+(yi+1−yi)
2

ti+1−ti
. Thus,

Definition 2: Given a trajectory Tr, the expected location
of (the object on) Tr at a point in time t between ti and ti+1

(1 ≤ i < n) is obtained by a linear interpolation between
(xi, yi) and (xi+1, yi+1).

Definition 3: Given a trajectory Tr, its projection on
the X-Y plane is called the route of Tr.

Definition 4: A map is a graph, represented as a relation
where each tuple corresponds to a block with the following
attributes:
– Polyline: The 2D coordinates of the shape of the block as
a polygonal line segment. Polyline gives the sequence of the
endpoints: (x1, y1), (x2, y2), . . . (xn, yn).
– Normal Speed: The normal travel-speed on the block in
minutes.
– Maximum Speed: The speed limit of the block.
Such maps are provided by, among the others, GDT

(www.geographic.com). An intersection of two streets is the
endpoint of the four block-polylines. Thus, each map is a
graph, with the tuples representing edges of the graph.
A trajectory that represents the motion plan of an ob-

ject O is constructed as follows. The route of O is specified
by giving the source and the destination that O is going to
visit. An external routine, available in most Geographic In-
formation Systems, which we assume is given a priori, com-
putes the shortest cost (distance or travel-time) path from
the source to the destination in the map graph. This path,
denoted P (O), is given as a sequence of blocks (edges), i.e.
tuples of the map. Since P (O) is a path in the map graph,
the endpoint of one block polyline is the beginning point of
the next block polyline. Thus, the whole route represented
by P (O) is a polyline denoted by L(O). Given that the trip
has a starting time, we compute the trajectory by comput-
ing for each straight line segment on L(O) , the time at
which the object O will arrive to the point at the end of the
segment.

3.2 Spatio-temporal Queries and Their Pro-
cessing without Travel-speed Prediction

We consider two categories of spatio-temporal queries.
The first category are point queries that pertain to the mo-

tion of a single specified object. Two example operators for
point queries are as follows.
Where At(Tr, t) - returns the expected location of trajec-

tory Tr at time t.
When At(Tr, l) - returns the time(s) at which the object

on Tr is at expected location l. The answer may be a set of
times if the moving object passes through a certain location
more than once.
The second category are range queries that retrieve the

trajectories that intersect a given region during a given time
interval. In this paper we consider the following operator for
range queries.
Sometime Inside(Tr,R, t1, t2) - is true for a trajectory

Tr and a region R iff there exists a time t ∈ [t1, t2] such
that the expected location of Tr at t is inside the region R.
Let us identify the topological properties which are nec-

essary and sufficient conditions for satisfaction of the above
predicate. Taking time as the third dimension, the region
R along with the queried time interval [t1, t2] can be repre-
sented as a prism PR in 3D space: PR = {(x, y, t)|(x, y) ∈
R ∧ t1 ≤ t ≤ t2}. PR is called the query-prism.
Sometime Inside(Tr,R, t1, t2) is true iff Tr intersects the

query-prism PR.
For the purpose of query processing, we assume an avail-

able 3D indexing scheme in the underlying DBMS.
In the rest of this paper we assume that [t1, t2] is in the

future. Otherwise query processing is not affected by travel-
speed prediction. Observe that when [t1, t2] is in the future,
answers to queries are all estimated, or expected in the fu-
ture, based on current information. The objective of predic-
tion is to improve the estimation.

3.3 Query Processing with Travel-speed Pre-
diction

When a speed update is received for a dynamic block B,
it is added into the history window. Future speeds are pre-
dicted for B for the next L time units (L is a system pa-
rameter). For any time after now + L, the normal speed
of B provided by the map is taken to be the speed at that
time. The predicted speeds are then used to update all the
trajectories that pass B within the next L time units. Since
trajectories are revised as a result of speed updates, this ap-
proach is called Speed Update Triggered Revision, or SUTR.

3.4 Comparison of SUTR and QPNTP
In this subsection we compare SUTR and Query Process-

ing with No Travel-speed Prediction in terms of how accu-
rately they answer queries.

3.4.1 Data Settings
The time-series data used in our simulations are travel-

speed time-series of the northbound Edens Expressway in
the Chicago area, which are published and periodically up-
dated on the web site www.ai.uic.edu/GCM/Edens.html.
These data are generated by loop detectors on each of the
36 northbound blocks in the expressway. Each detector av-
erages all the speeds of the cars going over it and sends over
this value every five minutes. Thus the speed update period
is 5 minutes. We collected history time series for each of the
36 blocks for 20 days, resulting in 5760 data points for each
block (20 days × 24 hours × 60 minuntes / 5 minutes). For
each block we used 10 days data to get the best value of the
smoothing constant, and used another 10 days to conduct

simulations.

3.4.2 Simulation Method
We randomly generated 5000 trajectories along the 36

blocks. Each trajectory is constructed based on 3 param-
eters: a start block (sb), a destination block (db), and an
initial time (t0). With these parameters, a moving object
travels along the expressway from the start block to the des-
tination block, starting at the initial time. The start block
is randomly selected from interval [1, 35]. Once the start
block is determined, we pick up a random value from the in-
terval [sb + 1, 36] as the destination block. The initial time
is assigned a random value from 0 to 2880×5 minutes where
2880 is the number of 5 minute intervals within 10 days.
Each simulation run is executed as follows. A range query

is issued at the beginning of each 5 minute interval within 10
days, which gives us 2880 queries. Each query has the form
of Sometime Inside(Tr, b, t+f, t+f+5), which is issued at
time t and retrieves the moving objects that are expected to
be inside block b sometime between t+ f and t+ f +5. For
each query, b is randomly chosen from [1, 36]. The lead time
f is fixed during a simulation run, and it ranges from 5 to
60 minutes with the step size of 5 minutes. When a query
is issued, since from the data we know the actual speeds of
each block in each time interval, we know where a simulated
object will be from t + f until t + f + 5. Thus we know
the correct answer set of each query. On the other hand, a
speed update is generated for each block for every 5 minute
interval, and SUTR is executed upon each speed update.
Exponential smoothing is used for travel-speed prediction
in SUTR. L is set to be 1 hour, namely the futures speeds
are predicted up to 1 hour ahead.
The accuracy of the answer set to a query is measured by

the sum of recall and precision. Recall means the portion
of retrieved objects out of the correct answer set, whereas
precision is that of correctly returned ones out of those re-
trieved. Let Sreturn be the set of retrieved trajectories by
a query, Scorrect be the set of correct answers. When the
number of elements in the set S is denoted by |S|, the recall
and the precision are defined as follows:

recall =
|Sreturn ∩ Scorrect|

|Scorrect| , precision =
|Sreturn ∩ Scorrect|

|Sreturn|
3.4.3 Simulation Results

0

0.5

1

1.5

2

0 10 20 30 40 50 60

re
ca

ll+
p
re

ci
si

o
n

lead time (minute)

SUTR
QPNTP

Figure 1: Sum of precision and recall as a function
of the lead time

Figure 1 shows the sum of recall and precision as a func-
tion of the lead time (f). It can be seen that when the lead
time is smaller than 15 minutes, the accuracy of SUTR is

higher than that of QPNTP, and the reverse is true after-
wards. This indicates that travel-speed prediction should
be performed for no more than 15 minutes ahead, for the
exponential smoothing method.

4. QUERY TRIGGERED REVISION WITH
QUERY RELAXATION

4.1 Motivation
SUTR requires updating of trajectories for every speed

update of every dynamic block. This incurs a performance
problem when the speed update rate is high or the size of the
highway network is large. Furthermore, the same procedure
may be repeated many times even though there may not be
queries against the updated trajectories.
A natural solution to this problem is that, instead of re-

vising trajectories for each speed update, revise them only
when answering a query. We call this approach Query Trig-
gered Revision, or QTR. For point queries, QTR works as
follows. When a point query is received at time t, the tra-
jectory of the queried object, denoted Tr, is retrieved from
the database. The dynamic blocks that are traveled after
t on the route of Tr are identified. The future speeds for
these blocks are predicted. Tr is then revised based on the
predicted speeds. Finally, the revised Tr is used to answer
the query.
For range queries, QTR works as follows. When a range

query Sometime Inside(Tr,R, t1, t2) is received at time t,
the set of the trajectories that intersect R after t is identified.
This can be done by running through the index tree using a
prism whose base is R and its height is tmax − t where tmax

is the maximum among the end times of all the trajectories.
Denote this set C. The dynamic blocks that are traveled
after t on the routes of the trajectories in C are found, and
the future speeds for them are predicted. The trajectories
in C are then updated with the predicted speeds. Finally
the query is evaluated on each updated trajectory.
Observe that for range queries, QTR requires updates to

the database trajectories every time a query is received. This
incurs a performance problem when the database is large or
the query rate is high. Further observe that in both SUTR
and QTR, the database trajectories change as a result of
travel-speed predictions.
In this section we propose an approach that avoids any up-

date to the database when answering a range query. This ap-
proach is called QTR with Query Relaxation, or QTR+QR.
QTR+QR improves QTR by introducing a filter stage. In
this stage, the original query is relaxed by extending the
query interval, such that the trajectories retrieved by the
relaxed query include all the answers that would have been
returned by QTR. Then in the refinement stage, each re-
trieved (filtered) trajectory is revised in main memory and
evaluated against the original query.

4.2 Description of QTR+QR
When a range query Sometime Inside(Tr,R, t1, t2) is re-

ceived, the system follows a filter-refinement strategy to pro-
cess the query. In the filter stage, the future speeds for each
dynamic block for the next L time units are predicted (re-
call that L is the maximum lead time for travel-speed pre-
diction). The query interval [t1, t2] is then extended based
on how the predicted speeds will affect the trajectories. For

example, if the predicted speeds are expected to cause de-
lays for all the objects, then the start time of the query
interval is extended to t1 − L. In the 3D space, this in-
terval extension is reflected by a down-shift of the base of
the original query-prism (see Figure 2). The relaxed query is
used to retrieve a set of candidate trajectories. In the refine-
ment strategy, each candidate trajectory is revised with the
predicted speeds and evaluated against the original query-
prism. Observe that saving the revised trajectories back
to the database would be the natural, and probably naive
way of doing so. However, it will result in many updates to
trajectories that may never be queried.

t

t1

t2

original prism P

t1−L

R

extended prism FPR original trajectory Tr

revised trajectory Tr’

x

y

R

Figure 2: Extension of the query-prism

Now we formalize the procedure of QTR+QR.

Query Triggered Revision with Query Relaxation

Input: Original query Q = Sometime Inside(Tr, R, t1, t2). The
normal speed vi and the maximum speed mi of each dynamic
block i. The latest h speed updates for each block.

Step 1: For each dynamic block i, predict the speed time series
Si for the next L time units. If a predicted speed is higher
than mi, revise that speed to mi. Let vi

high be the highest

speed in Si and vi
low the lowest one.

Step 2: Generate the relaxed query RQ as follows.

1. If for every block i, vi
high < vi, then

RQ = Sometime Inside(Tr, R, t1 − L, t2);

2. If for every i, vi
low > vi, then

RQ = Sometime Inside(Tr, R, t1, t2 + L);

3. Otherwise, RQ = Sometime Inside(Tr, R, t1 − L, t2 +
L).

Step 3: Use RQ to query the database, obtaining the candidate
set C.

Step 4: For each trajectory Tr in C, revise Tr with the predicted
speeds. Let C′ be the set of the revised trajectories.

Step 5: Refine by evaluating Q on each trajectory in C′.

4.3 Correctness Proof of QTR+QR
In this subsection we prove the correctness of QTR+QR.

We show that, under some very realistic assumption, QTR+QR
returns the same answer set as QTR. In the following analy-
sis, we use Tr to denote an original trajectory in the database
and Tr′ the one revised with the predicted travel-speeds.
Denote by Q a range query and by RQ its relaxed query.
Lemma 1: Assume that for each dynamic block the maxi-
mum speed is at most twice the normal speed. If Tr′ satisfies
Q then Tr satisfies RQ.

Proof sketch: Let t be the time when the query is issued.
Let tp be the time when the object is expected to arrive at a
location p according to Tr, and t′p be that according to Tr

′

(p is a point on the route of Tr). Consider the difference
between tp and t

′
p. There are three cases.

(1) t′p > tp, i.e. the revised trajectory causes a delay
at p. The maximum possible delay is L, and this delay
occurs when the predicted travel-speed during the time in-
terval [t, t + L] is 0 and thus the object is expected to be
stationary from t to t+ L according to Tr′;
(2) t′p < tp, i.e. the revised trajectory causes an advance

at p. The maximum possible advance is L. This advance
occurs when the speed of Tr′ is the maximum speed for
each block on the route of Tr′ from t to t + L (since that
maximum speed is twice than the normal one).
(3) t′p = tp.
In any of the above three cases, the difference between

tp and t
′
p is no more than L. Thus if a point a

′ of Tr′ is
inside the original query-prism Q, then the point a of Tr
corresponding to the location of a′ is inside the extended
query-prism RQ. ✷

Lemma 1 suggests that QTR+QR guarantees no ”false
dismissals” during the filter stage, i.e. the answer set re-
turned by the relaxed query is a superset of the answer set
of QTR. The assumption about the ratio between the nor-
mal speed and the maximum speed is realistic. For exam-
ple, the normal speed of all the Edens highway blocks is 45
miles/hour. Lemma 1 holds as long as the maximum speed
does not exceed 90 miles/hour.
Theorem 1: If for each dynamic block the maximum speed
is at most twice the normal speed, then the answer set given
by the QTR+QR method for Q is identical to that given by
the QTR method.

4.4 Comparison of QTR+QR, QTR, and SUTR
In this subsection we compare QTR+QR with QTR and

SUTR in terms of the number of trajectory revisions for each
one. We do this for the following reason. The cost of trajec-
tory maintenance and query processing can be decomposed
into two components. The first component is the cost of
running the query-prism through the index tree. This cost
is a constant for a query, regardless of the query processing
method used. The second component is how many trajecto-
ries are evaluated and updated individually, which depends
on the method used.
The simulation setup is similar to that in section 3. The

trajectory database with 5000 trajectories resides in the
main memory during all the simulations. Let the query rate
be qr queries per minute. Each simulation run is executed
as follows. qr queries are generated for every minute within
10 days, which gives us qr×60×24×10 queries. Each query
has the form of Sometime Inside(Tr, b, t+ f, t+ f +5). t is
the time when the query is issued. b is randomly chosen from
[1, 36], and f is randomly chosen from 5, 10, ..., 60 minutes.
L is set to be 15 minutes for all the three approaches.
We experimented with qr ranging from 1 to 20. Figure 3

shows the total number of trajectory revisions as a function
of the query rate. Observe that the numbers for QTR and
QTR+QR increase as the query rate increases, whereas that
for SUTR does not change. This is because SUTR revises
trajectories only as a result of speed updates but not as a
result of queries; whereas QTR and QTR+QR revise tra-
jectories only as a result of queries. Further observe that

0

50

100

150

200

250

2 4 6 8 10 12 14 16 18 20

n
u
m

b
e
r

o
f
tr

a
je

ct
o
ry

 r
e
vi

si
o
n
s

(1
0
,0

0
0
)

query rate (queries/minute)

QTR+QR
QTR

SUTR

Figure 3: Number of trajectory revisions as a func-
tion of the query rate

QTR+QR is always better than QTR and the difference
between them increases as the query rate increases. This
verifies that QTR+QR significantly reduced trajectory re-
visions by excluding a lot of trajectories in the filter stage.
Actually the slope of QTR+ QR is much flatter than that
of QTR, indicating that QTR+QR is much less sensitive to
the query rate than QTR. Finally, QTR+QR is better than
SUTR when the query rate is lower than 12 queries/minute,
and after that SUTR is better. The threshold 12 is a func-
tion of the number of trajectories in the database (5000 in
our case), and will increase as the number of trajectories
increases.

5. CONCLUSION
We examined travel-speed prediction for query process-

ing. We proposed three methods of applying travel-speed
prediction, namely SUTR, QTR, and QTR+QR, and ana-
lyzed them theoretically and experimentally. The conclu-
sions are (i) for the short term future (15 minutes or less),
query processing with travel-speed prediction provides more
accurate answers than without travel-speed prediction; (ii)
QTR+QR is equivalent to QTR (i.e. it provides the same
answer set), but with a much lower number of trajectory re-
visions; (iii) QTR+QR and SUTR are suitable for different
situations depending on the query rate.
The accuracy of query processing with travel-speed pre-

diction may be improved by using a more sophisticated travel-
speed prediction method. For example, multivariate mod-
els [3] take into considerations the interactions between the
traffic of neighboring blocks. These models proved to be su-
perior to univariate methods (such as the one used in this
paper) as far as short term forecasting is concerned, and
they are the subject of future work.

6. REFERENCES
[1] D. Montgomery, L. Johnson, and J. Gardiner.

Forecasting and Time Series Analysis. McGraw-Hill,
1990.

[2] G. Trajcevski, O. Wolfson, F. Zhang, and
S. Chamberlain. Geometry of uncertainty in moving
objects databases. In Proc. of the 8th Int. Conf. on
Extending Database Technology (EDBT 2002), pages
233–250, March 2002.

[3] A. Stathopoulos and G. Karlaftis. A multivariate
state-space approach for urban traffic flow modeling
and prediction. In 81th Annual Transportation Research
Board Meeting, 2002.

