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1. INTRODUCTION

Digital libraries are repositories of data objects residing on servers, and
accessed by clients through the Internet/World Wide Web or other elec-
tronic networks. The server of an object stores the object, and automatically
receives the object updates. The clients read and/or subscribe to receive the
updates to an object of interest from the server.

One of the features that distinguishes digital libraries from traditional
databases is new cost models for client access to intellectual property.
Clients will pay for accessing data items in digital libraries, and we believe
that optimizing these costs will be as important as optimizing performance
in traditional databases. Indeed, in a recent workshop on strategic direc-
tions in computing research, cost management was identified as one of the
six major grand challenges that have to be overcome in order to make
digital libraries and electronic commerce widely accepted and used (see
Adam et al. [1996]).

In this article we address the problem of cost optimization for clients that
access digital libraries. The cost optimization problem arises when a client
has a choice of cost models and retrieval protocols. This choice may be
available from a single vendor of information, or from multiple vendors
that provide the same information. Thus, for example, a client may be able
to make a choice between receiving the latest price for a portfolio of stocks
on demand, or by subscription. Furthermore, the subscription may entitle
the client, for a flat fee, to receive all the updates during a day, or the client
may pay per update.

Our approach to cost optimization is to provide two basic cost models,
and several complexity measures for each of them. Then we analyze several
algorithms according to these complexity measures.

We consider two cost models of information, the request cost model and
the time cost model.

—In a request cost model, a client pays a read cost rc for each read of an
object submitted and satisfied by the server; if the client subscribes to
receive the updates to the object, then the client pays a write cost wc
(which may be different than rc) for each propagated update. This is the
cost model for newspapers and magazines, where the cost per copy is
higher at the newsstand than for subscription delivery. One possible
option that we consider in this cost model is cache-invalidation; for an
invalidation cost ic that is lower than wc, the server informs the client
that the object was updated, but without providing the new value.

—In a time cost model the updates can be propagated from the server to
the client using a time-based subscription. Namely, there is an initiation
fee i f, after which the client is entitled to receive from the server, for a
flat fee f f, all the object updates during a time period (say, a month).
This is the cost model for cable TV service. The client can still submit
demand requests to the server (pay per view).
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The two cost models lead to different problems and solutions in minimiz-
ing the cost, and thus to drastically different cost optimization algorithms.
These algorithms use two basic static retrieval algorithms (or policies, or
protocols) which are Demand and Subscription. We also introduce and
analyze one hybrid static algorithm called Divergence Caching, and a set of
dynamic algorithms called Sliding-Window algorithms.

—In Demand the client propagates reads to the server, in response to
which the server provides the latest version of the object. Cache-invalida-
tion is an option that may be available with Demand; if so, when the
object is updated the server notifies the client (without providing the new
version). Thus the client can cache the object received from the server,
and read the cached version until it receives an update notification.

—In Subscription the server propagates to the client each update of a
cached object.

—Static Divergence Caching is a combination of Subscription and Demand.
It takes advantage of reads that, in order to reduce access cost, can
tolerate an out-of-date version of the object. The tolerance of a read is a
number indicating the maximum divergence of the version returned in
response to the read from the most up-to-date version. Divergence
caching is based on a parameter called the refresh rate, which denotes the
maximum divergence between the client and server versions of the
object. Divergence caching uses Subscription to satisfy reads with a
tolerance higher than the refresh rate, and Demand to satisfy the other
reads. In this sense divergence caching is a combination of Subscription
and Demand. Experimental results show that Divergence Caching re-
duces by at least half the expected cost of a request compared to the
optimum of Subscription and Demand (see Section 4.4). We provide
analytical and experimental evaluation of the Static Divergence Caching
algorithm in the request cost model.

—The Sliding-Window algorithms are dynamic in the sense that they
switch between Subscription and Demand. The principle behind the
Sliding-Window algorithms is to predict the read-write distribution in
the near future based on the recent past history. The recent past history
is captured by the concept of a sliding window. The “incarnation” of this
principle differs for the two cost models. In the request cost model, the
sliding window is the latest k requests, and this window is used to
predict the probability of the next request being a write. The predicted
value is used to decide between Subscription and Demand.

—In the time cost model the sliding window is the latest k time slots, and it
is used to predict the expected number of reads in the subsequent time
slots. Based on this prediction, using an algorithm Opt it is determined
whether the next time slot should employ Subscription or Demand. The
algorithm Opt is of independent interest. It can be used to allocate
Subscription or Demand to each slot in a sequence of time-slots for which

Theory of Cost Management • 413

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.



the expected numbers of reads are known; the allocation minimizes the
total expected cost.

—The Sliding-Window algorithms are also incorporated into Divergence
Caching to obtain an algorithm that we call Dynamic Divergence Cach-
ing. In this algorithm the current sliding window is used to establish an
optimal refresh rate, and this refresh rate may change dynamically as
the distribution of reads and writes in the sliding window changes. Our
experimental evaluation shows that dynamic divergence caching is supe-
rior to static divergence caching when the read-write probabilities change
dynamically.

We analyze these algorithms using two types of complexity measures,
namely, probabilistic and worst case.

—For the probabilistic analysis we minimize the expected total cost under
one of the following assumptions. For the request cost model we assume a
probability u for a request to be a write (i.e., an update), and a probability
1 2 u for it to be a read. For the time cost model we assume an expected
number of requests per time unit.

—The worst case complexity measure considers performance of an algo-
rithm for the worst case input. More specifically, we use the notion of
competitiveness (see Karlin et al. [1988]) of online algorithms. An online
algorithm is an algorithm that receives its input schedule one request at
a time, and acts on each request before obtaining the next one; thus the
algorithms that we consider in this article are online. Roughly speaking,
an online algorithm is competitive if, for every schedule s, its perfor-
mance on s is at most a constant times the performance of the optimal
offline algorithm on s (in the preceding, performance may refer to any
cost measure). We determine which retrieval algorithms are competitive.
In general, the dynamic algorithms (i.e., ones that switch dynamically
between Subscription and Demand) are competitive, whereas the static
ones are not competitive. The worst-case analysis is appropriate for a
chaotic read-write pattern, that is, one in which the pattern in the recent
past is not indicative of the pattern in the near future.

The rest of the article is organized as follows. In Section 2 we analyze the
Demand, Subscription, and Sliding Window algorithms in the request cost
model. We derive formulas that establish the read and write costs and
probabilities for which each of the algorithms is optimal (i.e., has a lower
expected cost than the others). We show that if the probabilities are
unknown or vary, then either the Sliding Window or Demand-with-cache-
invalidation is optimal; we establish the costs for which each of these
dominates the other. Our worst case analysis shows that, again, Sliding
Window or Demand-with-cache-invalidation are competitive whereas the
other algorithms are not competitive.

In Section 3 we consider the time cost model. In this model Subscription
has a flat fee (and possibly an initiation fee) per time slot, regardless of the
number of updates propagated to the client. We devise the algorithm Opt
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that selects for each time slot either Subscription or Demand, depending on
the relative expected costs of the two. We also develop the Sliding Window
variant for the time cost model.

In Sections 2 and 3 we make the tacit assumption that each read must
retrieve the latest version of the object. In Section 4 we consider divergence
caching in the request model. We show that the dynamic divergence
caching algorithm is competitive, whereas the static algorithm is not.
Experimental results for the static and dynamic divergence caching algo-
rithms are also provided in this section. In Section 5 we compare our work
to relevant research, and in Section 6 we provide a detailed summary of our
results.

2. THE REQUEST COST MODEL

Consider some library object. The relevant requests for the object are writes
that are issued by the server, and reads that are issued by the client. In
other words, we ignore the reads at the server and the writes at the client
since their cost is not affected by the retrieval algorithm. In this section we
assume that reads are nontolerant, that is, they require the latest version
of the object. A schedule is a finite sequence of relevant requests to the data
item x. For example, w, r, r, r, w, r, w is a schedule. For the purpose of
analysis we assume that the relevant requests are sequential. In practice
they may occur concurrently, but then some concurrency control mecha-
nism will serialize them.

In the request model, the cost of satisfying a read request sent from the
client to the server is rc. The cost of propagating a write (or an update) of
the object from the server to the client is wc.

Our analysis of protocols addresses both the expected case and the worst
case. The complexity measure for the worst case is competitiveness, which
was informally defined in the introduction, and is formally defined in
Section 2.2.3. The complexity measure for the expected case is the expected
cost of a relevant request. To derive this expected cost we assume that the
probability that a relevant request is a write is u and the probability that a
relevant request is a read is 1 2 u.

Suppose that A is a protocol, and the write-probability u is fixed and
known. Then we denote by EXPA(u ) the expected cost of a relevant request.
Suppose now that u is unknown, or it varies over time, with equal
probability of having any value between 0 and 1. Then we define a new
complexity measure, the average expected cost per request, denoted AVGA.
It is the mean value of EXPA(u ) for u ranging from 0 to 1, namely,

AVGA 5 E
0

1

EXPA~u !du. (1)

The average expected cost should be interpreted as follows. Suppose that
time is subdivided into periods, where in the first period the probability
that a relevant request is a write is u1 and that it is a read is 1 2 u1, in the
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second period the probability that a relevant request is a write is u2 and
that it is a read is 1 2 u2, and so on. Suppose further that each u i has an
equal probability of having any value between 0 and 1. In other words, each
u i is a random number between 0 and 1. Then, when using the protocol A,
the expected cost of a relevant request over all the periods of time is the
integral denoted AVGA.

We analyze the Subscription, Demand (with and without cache invalida-
tion), and the Weighted-Sliding-Window (WSW) protocols under the preced-
ing complexity measures. The Demand with Cache Invalidation (DCI)
protocol is basically the Demand protocol augmented such that consecutive
reads from the same client (i.e., without intervening writes) can use the
saved copy of the first read. To achieve this, the client may be in one of two
states: it either has a copy of the object, or it does not. Utilizing DCI, if
there is a copy of the object at the client, the client behaves as follows. A
read (which returns the local copy) does not incur a cost, and it leaves the
client in the same state. A write (at the server) causes an invalidation
notification to be sent, incurring a cost of ic. In response, the client
discards its copy and changes to the “no-copy” state. If there is no copy of
the object at the client, then the client behaves as follows. A read request is
propagated to the server. When the response is received, the client saves
the copy of the object and it switches states. A write leaves the client in the
same state, and it incurs no cost to the client (since it is not propagated to
the client).

The WSW family of protocols is suggested by the need to dynamically
change between Subscription and Demand based on the relative costs of
executing the last k requests under Demand and Subscription: if the cost of
executing the last k requests under Demand is lower than that of executing
them under Subscription, then we use Demand; otherwise we use Subscrip-
tion. The following note indicates the rationale behind this approach of
selecting a policy for the next request.

Note. Let kr be the number of reads among the last k requests, and
assume that the probability of the next request being a read is kr/k. Then
the expected cost of the next request under Demand (i.e., rc z kr/k) is lower
than that under Subscription (i.e., wc z (1 2 kr/k)) if and only if the cost of
executing the last k requests under Demand (i.e., rc z kr) is lower than that
of executing them under Subscription (i.e., wc z (k 2 kr)).

These protocols maintain a sliding window of the last k requests, and
make a decision for the next operation based on this window. The different
protocols in the sliding window family differ based on the size of the
window, k.

Subscription and Demand are static protocols, whereas the Demand-
with-cache-invalidation and the sliding window protocols are dynamic in
the sense that they dynamically switch between Subscription and Demand.
The objective of our analysis of the protocols is to select the protocol that
minimizes cost. If each information provider supports either Subscription
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or Demand but not both, then protocol selection implies provider selection.
Thus a dynamic protocol may switch dynamically between providers.

2.1 The Weighted-Sliding-Window Protocol Description

The WSW protocol switches between Subscription and Demand retrieval of
an object x. It does so by examining a window of the latest relevant read
and write requests, and switching from Demand to Subscription if the cost
of the reads in the window is higher than that of the writes, and from
Subscription to Demand in the reverse case. Observe that on Demand the
window needs to be examined only when a read is issued, and on Subscrip-
tion it needs to be examined only when a write occurs. We denote by WSWk
the protocol that uses a window of size k. In this section we describe a
distributed and scalable implementation of the protocol WSWk.

The simple case is when the client is on Subscription to x. Then all the
reads issued at the client are satisfied locally, and all the writes issued at
the server are propagated to the client; thus the client receives all the
relevant requests. The window is tracked as a vector of k bits (e.g., 0
represents a read and 1 represents a write). At the receipt of any relevant
request, the client drops the oldest request in the window, and adds the
current one. If there are m reads and n writes in the window, then it
compares m z rc and n z wc. If the first term is higher, then the client
remains on Subscription; that is, it simply waits for the next request.
Otherwise it cancels the Subscription, and moves to Demand (i.e., sends
every read to the server).

When the client is on Demand, then the server receives all the relevant
requests, and can maintain the window for each client. Observe that
different clients may have different windows; therefore, this solution will
not scale as the number of clients increases. Thus we devised the following
scheme that enables the client to always maintain the window, even when
the client is on Demand. In order to facilitate this, the server cooperates by
maintaining a set S of timestamps of the latest M writes on the object x,
where M is greater than or equal to k. Here M is taken to be the maximum
of the window sizes of all the clients accessing the object x. In its response
to a read request, the server piggybacks the set S on the object x sent to the
client. This set of values is used by the client to maintain the window
during the Demand phase as described in the following.

The client maintains a sliding window of k bits. This window reflects the
latest k requests preceding the last read that occurred during the current
Demand phase; if no read occurred during the current Demand phase, then
the window reflects the latest k requests preceding the current Demand
phase. Thus, the window does not capture write requests that may have
occurred since the last read of the current Demand phase, since these
writes are currently insignificant for the purpose of detecting when to
switch to Subscription.

This window is maintained as follows. The client always remembers the
timestamp of the last read in the current window. Whenever a new read is
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issued from the client, the server, with its response, piggybacks the set S of
timestamps of write operations as described earlier. Using the current
window, the timestamp of the last read in the current window, the
timestamp of the new read, and the set S, the client constructs a new
window. The new window is constructed by adding to the current window
the new read, and all the writes that occurred between the new read and
the previous one (i.e., the last read in the current window).

Now we demonstrate by an example how the new window is constructed.
Suppose that the size of the window is 5, and the current window is 10010
where 0 represents a read and 1 represents a write. Suppose further that
the timestamp of the last read in the window is 7:01. Assume now that a
new read is issued by the client at time 7:05, and the set S in the response
contains the timestamps 6:58, 7:00, 7:02, 7:03, 7:04. Then the new window
is 01110, where the timestamp of the last read in the new window is 7:05.
The new window represents the reads at 7:01 and 7:05, and the three
writes between them.

After constructing the new window, the client determines whether to
switch to Subscription as before. Namely, if there are m reads and n writes
in the new window, then the client compares m z rc and n z wc. If the
second term is higher, then the client remains on Demand; that is, it does
not take an action. Otherwise it initiates Subscription. This separate
Subscription-initiation can be avoided. It can be incorporated into servicing
reads if the server can satisfy client read requests of the type: “Send x and
S, and if the number of writes since time t (a parameter of the request) is
lower than q (another parameter of the request), then initiate Subscription;
that is, propagate further writes. t is the time of the last read request from
the client; since the client has the latest k timestamped relevant requests
preceding time t, it can compute q, the number of writes below which the
cost of reads in the window of latest k relevant requests (preceding the
current time) exceeds the cost of writes.

In summary, the client maintains a window W of k requests and it
executes the following algorithm.

—If the client is on Subscription, then it performs the following procedure.
(1) When a write is propagated by the server, it is added to the window,

and the oldest operation is deleted from the window. Denote by m the
number of reads in the window and by n the number of writes in the
window. If m z rc , n z wc, cancel the Subscription (and move to
Demand)

(2) When a read occurs, add it to the window and discard the oldest
operation from the window.

—If the client is on Demand, then it performs the following procedure
whenever a read occurs.
(1) Propagate the read request to the server.
(2) When the server responds to a new read request, construct the new

window of the latest k requests by using the old window, the set S of
write timestamps, the timestamp of the new read, and the timestamp
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of the previous read, that is, the last read in the current window (or,
if this last read occurred before the beginning of the Demand phase,
then using the timestamp of the beginning of the Demand phase).
The current read becomes the latest request in the new window; save
its timestamp.

(3) Denote by m the number of reads in the window and by n the number
of writes in the window. If m z rc $ n z wc, then initiate Subscrip-
tion.

The server executes the following algorithm.

—It maintains the set S of timestamps of the latest M writes.
—When a remote read is received from a client (the client must be on

Demand, otherwise the read is satisfied locally) it piggybacks the set S
on the reply to the client.

In the following analysis we assume that k . 1, since WSW1 is
equivalent to Demand with cache invalidation.

2.2 Cost Analysis

In this section we analyze the expected cost, average expected cost, and the
worst case costs of the protocols Subscription (denoted S), Demand (denoted
D), DCI, and WSWk (for k . 1). First we analyze and compare the
expected costs of the protocols, and then we analyze and compare the
average (over all possible read-write ratios) of the expected costs of the
protocols. Finally we analyze the worst case performance of the protocols.

2.2.1 Comparison of Expected Costs. In this subsection we derive the
expected costs of the protocols, and we show that for each k and for each u,
the WSWk protocol has a higher expected cost than one of the static
protocols. Therefore, one of the protocols, D, S, and DCI has minimal cost.
We determine the conditions for which each of the protocols, D, S, and DCI
is optimal.

In the case of Subscription, read requests do not cost anything, whereas
each write operation costs wc. Thus the expected cost of an operation for
Subscription is equal to the probability that the operation is a write
operation multiplied by wc, and thus is equal to u z wc. In the case of
Demand, each read operation costs rc, whereas each write operation does
not cost anything. Thus the expected cost of an operation for Demand is
equal to (1 2 u ) z rc.

Now consider the DCI protocol. The expected cost of an operation is the
sum of: (i) (the probability that the client has a copy) times (the probability
that the next request is a write) times ic; (ii) (the probability that the client
does not have a copy) times (the probability that the next request is a read)
times rc. Note that the probability that the client has a copy (resp., does
not have a copy) is the same as the probability that the previous request
was a read request (resp., write request). Thus the expected cost of a
request is (1 2 u ) z u z ic 1 u z (1 2 u ) z rc.
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Thus,

EXPD 5 ~1 2 u ! z rc and EXPS 5 u z wc

and EXPDCI 5 ~1 2 u ! z u z ic 1 u z ~1 2 u ! z rc. (2)

Now we derive the expected cost of the WSWk protocols. Consider the
WSWk protocol for some given k, and consider any instant of time during
the operation of the protocol. Let l and k 2 l, respectively, be the number
of read and write requests among the last k requests. Then the probability
that currently the client is on Subscription is equal to the probability that
l z rc is greater than or equal to (k 2 l ) z wc, and this is the same as the
probability that l $ k z wc/(rc 1 wc). This is equal to the probability that
the number of writes among the last k requests is less than or equal to k z
rc/(rc 1 wc). Let ak denote this probability. Also let L 5 k z rc/(rc 1
wc). Based on the Bernoulli trial, it can be shown that

ak 5 O
j50

L Sk
j D z u j z ~1 2 u !k2j. (3)

The next theorem gives an expression for the expected cost of the WSWk
algorithm. Since the protocol switches between Subscription and Demand,
this expression is equal to the sum of two subexpressions—the contribution
of Subscription and that of Demand.

THEOREM 1. For every k and for every u, the expected cost of the WSWk
algorithm is

EXPWSWk~u ! 5 u z ak z wc 1 ~1 2 u ! z ~1 2 ak! z rc. (4)

PROOF. Let us consider a single request q. When the client is on
Subscription, then the expected cost of q is equal to u z wc (which is wc
times the probability that q is a write operation). When the client is on
Demand, the expected cost of q is (1 2 u ) z rc. The actual expected cost of
q is the probability that the client is on Subscription times the expected
cost of q when the client is on Subscription, plus the probability that the
client is on Demand times the expected cost of q when the client is on
Demand. Thus, we conclude the theorem. e

The next theorem compares the expected costs of the WSWk and the
static protocols.

THEOREM 2. For every k and every u, EXPWSWk
$ min{EXPS, EXPD}.

PROOF. The following can be shown from Equations (2) and (4).

EXPWSWk 2 EXPS 5 ~1 2 ak! z ~rc z ~1 2 u ! 2 wc z u ! ,
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EXPWSWk 2 EXPD 5 ak z ~wc z u 2 rc z ~1 2 u !! .

From the preceding two equations, we see that EXPWSWk
$ EXPS when

rc z (1 2 u ) $ wc z u, and EXPWSWk
$ EXPD when rc z (1 2 u ) # wc z u.

Putting these observations together, we see that for every k and every u,
EXPWSWk

$ min{EXPS, EXPD}. e

The preceding theorem indicates that the expected cost of the WSW
protocols is never lower than the minimum of the other protocols. In other
words, either Subscription or Demand is better than the WSW protocol.
Therefore, one of the protocols Demand, Subscription, or DCI has minimum
expected cost for any value of u. The following corollary specifies the exact
ranges of u for which each of the three protocols has the minimum expected
cost.

COROLLARY 1. If u . max{rc/(rc1wc), rc/(rc1ic)}, then Demand has
the minimum (among all the protocols) expected cost. If u , min{rc/
(rc1wc), 1 2 wc/(rc1ic)}, then Subscription has the minimum expected
cost. Otherwise, i.e., when u lies between the preceding values),1 Demand-
with-cache-invalidation has the minimum expected cost.

PROOF. From Equation (2) we see the following results.
(a) EXPD , EXPS when u z (rc 1 wc) . rc, that is, when u .

rc/(rc1wc);
(b) EXPD , EXPDCI when rc , u z (rc 1 ic), that is, when u .

rc/(rc1ic).
From (a) and (b), we get that Demand has minimum expected cost when
u . max{rc/(rc1wc), rc/(rc1ic)}. The other parts of the corollary are
proved along similar lines. e

2.2.2 Comparison of Average Expected Costs. In this subsection we
derive the average expected costs of the protocols, and we show that at
least one of the dynamic protocols has a lower average expected cost than
both static protocols. We also show how to determine which dynamic
protocol has the lowest average expected cost for a given value of the
parameters ic, rc, and wc.

By Equations (1) and (2) we obtain in a straightforward fashion that

AVGD 5 E
0

1

EXPD du 5
rc

2
, AVGS 5 E

0

1

EXPS du 5
wc

2
,

AVGDCI 5 E
0

1

EXPDCI du 5
ic 1 rc

6
. (5)

1Observe that it must be the case that max {rc/(rc1wc), rc/(rc1ic)} $ min {rc/(rc1wc),
12wc/(rc1ic)}.
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Note that, roughly speaking, the average expected cost is computed by
assuming that u is equally likely to take any value between 0 and 1; this
means that on the average u 5 1

2, and since on Demand writes do not incur
a cost, the average expected cost of a request in this case (i.e., AVGD) is
rc/ 2. A similar intuition applies for the expression AVGS. The expression
for AVGDCI is obtained by observing that *0

1u z (1 2 u )du 5 1
6.

The following technical theorem gives the expression for AVGWSWk
. The

proofs of this and of the other theorems in this section are given in the
appendix.

THEOREM 3. For the WSWk protocol, the average expected cost per request
is given by the following equation.

AVGWSWk 5
wc~L 1 1!~L 1 2! 1 rc~k 2 L!~k 2 L 1 1!

2~k 1 1!~k 1 2!
(6)

(Recall that L 5 k z rc/(rc 1 wc).)
Remember that the WSWk protocol operates as follows. If there are too

few writes in the window, more specifically less than or equal to L, then the
client will be put on Subscription for the next request; if there are too few
reads in the window, more specifically less than or equal to k 2 L 2 1,
then the client will be put on Demand for the next request. In this sense
the preceding expression is symmetric with respect to read/write costs.

Thus, we have now obtained the expressions for the average expected
costs of all the protocols. For the rest of this subsection we concentrate on
comparing these costs.

The next theorem shows that AVGWSWk
converges as k goes to `.

Furthermore, the theorem indicates that starting from a certain value of k,
AVGWSWk

is bigger than its value in the limit.

THEOREM 4. limk3` AVGWSWk
5 (wc z rc)/(2(wc 1 rc)). Furthermore,

for all k $
1
4 (wc/rc) 1 (rc/wc) 2 6), AVGWSWk

is bigger than (wc z
rc)/(2(wc 1 rc)).

The last theorem, combined with Equation (5), indicates that for each rc
and wc there exists a value k0, such that for all k $ k0, AVGWSWk

is
smaller than both AVGS and AVGD. (The reason is that the asymptotic
value of AVGWSWk

, which is (wc z rc)/(2(wc 1 rc)), is smaller than both
AVGS which is wc/ 2 and AVGD which is rc/ 2). In other words, Subscrip-
tion and Demand are suboptimal in terms of average expected cost. Thus,
the minimum average expected cost is obtained by a dynamic protocol, that
is DCI or WSWk. The last theorem also indicates that if there is a window
size k for which AVGWSWk

is smaller than the value in the limit (i.e., (wc z
rc)/(2(wc 1 rc)), then this k is smaller than 1

4 ((wc/rc) 1 (rc/wc) 2 6).
Therefore, the protocol with the lowest average expected cost can be

selected by the following procedure. Compute the values for

(1) AVGDCI (using Equation (5));
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(2) AVGWSWk
for each k , 1

4((wc/rc) 1 (rc/wc) 2 6), (using Equation (6));
(3) (wc z rc)/(2(wc 1 rc)).

If (1) is the smallest, then select DCI. If some value in (2) is the smallest,
then select WSWk for the window size k that has the minimum AVGWSWk

.
If (3) is the smallest, then select WSWk with a window size that is
arbitrarily close to (wc z rc)/(2(wc 1 rc)). For any given e, a window size
for which AVGWSWk

is within e of (wc z rc)/(2(wc 1 rc)) can be found
using Equation (17) given in the appendix (the value of k is chosen by
setting X 1 Y , e).

In some cases the foregoing procedure can be bypassed. For example, it
can be shown that if rc $ 3wc, then AVGWSWk

is smaller than AVGDCI for
every window size. It can also be shown that if ic # (6rc z wc 2 3rc2 2
wc2)/(4(wc 1 rc)) and 1 2 (=6/3) # (rc/wc) # 1 1 (=6/3), then
AVGDCI # AVGWSWk

for all k $ 2. For brevity, the proofs of these
statements are omitted.

2.2.3 Worst Case Analysis. In this subsection we show that the static
algorithms S and D perform poorly in the worst case, whereas the dynamic
algorithms DCI and WSW (i.e., the ones that switch dynamically between
Subscription and Demand) perform well.

We take competitiveness as the worst case performance measure of a
protocol. We use the notion of competitiveness as defined in Motwani and
Raghavan [1995]. Formally, a c-competitive protocol A is defined as follows.
Suppose that M is the perfect protocol that has complete knowledge of all
the past and future requests. Protocol A is c-competitive if there exist two
finite numbers c ($ 1), and b ($ 0), such that for any schedule c, COSTA
(c) # c z COSTM(c) 1 b. We call c the competitiveness factor of the
protocol A. Competitiveness bounds the worst case cost of the protocol to be
within a constant factor of the minimum cost. We say a protocol A is tightly
c-competitive if A is c-competitive, and for any number d , c, A is not
d-competitive.

First, let us consider the two static protocols. For Demand, we can pick a
long schedule that consists of only reads. Then the cost of the Demand
protocol is unboundedly higher than the cost of the optimal protocol on this
schedule (which is 0 if we keep a copy at the client).

For Subscription, we can also pick a long schedule that consists of only
writes. Then the cost of the Subscription protocol on this schedule is also
unboundedly higher than the optimal cost (which is 0 if we do not keep a
copy at the client). Therefore, the static algorithms Demand and Subscrip-
tion are not competitive.

THEOREM 5. The sliding-window algorithm WSWk is tightly (e/
min{wc,rc})-competitive where e 5 (k 1 1)wc 1 (k z wc)/rc 1 wc) (rc 2
wc).

PROOF. Let e be as given in the statement of the theorem. Let c be a
schedule of requests. Consider the subsequence S of c consisting of read
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requests, each of which occurs immediately after a write request. Let Nc be
the number of reads in S. The cost of an optimal offline algorithm on the
schedule c is Nc z min{wc, rc}, since for each read r in S either the
immediately preceding write is sent to the client, or r is sent to the server;
all other requests incur a zero cost. We prove the theorem by showing (1)
COSTWSWk

(c) # Nc z e 1 c where c is a constant, and (2) there exists a
schedule c0 for which COSTWSWk

(c0) 5 Nc0
z e 1 c. It follows that WSWk

is tightly (e/min{rc,wc})-competitive.
Now we prove the first postulate (1). We divide the schedule c into

maximal blocks consisting of similar requests. Formally, let B1, B2, . . . ,
Br be the division of c into blocks such that the requests in any block are
all reads or all writes, and successive blocks have different requests. It is
easy to see that the total number of read blocks in c (i.e., blocks that only
contain read requests) is either Nc or (Nc 1 1). Similarly, the total
number of write blocks in c is either Nc or (Nc 1 1). Now, we analyze the
cost of read and write requests separately. Consider any read block Bi. Let
L 5 (k z wc)/(rc 1 wc). It should be easy to see that only the first L
reads in Bi may each incur a cost of rc. After the first L reads the
algorithm will definitely be switching to Subscription and further reads in
the block will not incur any cost. Thus the cost of executing all the reads in
Bi is bounded by L z rc. Hence the cost of all the reads in c is bounded
above by (Nc 1 1) z L z rc. By a similar argument, it can be shown that the
cost of all the writes in a write block is bounded by (k 1 1 2 L)wc. As a
consequence, the cost of all the writes in c is bounded by (Nc 1 1) z (k 1
1 2 L) z wc. Hence, COSTWSWk

(c) # (Nc 1 1) z (L z rc 1 (k 1 1 2 L) z
wc). Substituting for L and after some simplification we get COSTWSWk

(c) # Nc z e 1 c for an appropriate constant c.
To show that the preceding bound is tight (postulate (2)), consider a

schedule c0 that starts with a block that contains k read requests, and in
which each subsequent block is also of length k. It should be easy to see
that COSTWSWk

(c0) 5 Nce 1 c9 for an appropriate constant c9. e

THEOREM 6. The algorithm DCI (i.e., Demand-with-cache-invalidation)
is tightly (rc1ic)/min{rc,wc}-competitive.

PROOF. Similarly to the proof of Theorem 5, we let Nc be the number of
reads in c that occur immediately after a write, where c is an arbitrary
schedule of requests. It is easy to see that Nc z min{rc, wc} is the minimum
cost to satisfy all the requests in c by an offline algorithm. Let B1, B2, . . . ,
Br be the division of c into blocks such that the requests in any block are
all reads or all writes, and successive blocks have different requests.

As in the proof of Theorem 5, the total number of read blocks in c is less
than or equal to (Nc 1 1), and a read block costs at most rc since after the
first read the client will have a copy and will be on Subscription. Thus the
total cost of reads is bounded by (Nc 1 1) z rc. Similarly, the total number
of write blocks in c is less than or equal to (Nc 1 1). A write block costs
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only ic since, at the first write in the block the server will send an
invalidate message and during the remainder of the block the client will
have a copy of the object. Thus, the total cost of writes in c is bounded by
(Nc 1 1) z ic, and COSTDCI(c) # Nc(rc 1 ic) 1 (rc 1 ic).

To show that the preceding bound is tight, consider a schedule c0 that
starts with a read request, and in which each subsequent block is also of
length 1. It should be easy to see that COSTDCI(c0) 5 (rc 1 ic) z Nc0

1 c
where c is some constant. e

3. THE TIME COST MODEL

In this section, we consider the time cost model. In this model, if the client
chooses Subscription then he or she will be charged an initiation fee (i f ),
and thereafter the client will be charged a flat fee ( f f ) for each time slot.
During this time, every write to the data item will be propagated to the
client. On the other hand, if the client chooses Demand, then each read
request will be charged rc. It is possible for the client to change the access
policy dynamically after each time slot. However, the client will be charged
the initiation fee whenever he or she switches from Demand to Subscrip-
tion; a switch from Subscription to Demand will not incur an initiation fee.
The complexity measure that we propose for this cost model is the average
cost per time slot (rather than the cost per request as in the previous
section).

Note that if we choose the Subscription policy for a time slot, then the
cost incurred for that time slot is fixed irrespective of the number of write
or read requests that occur during that slot. On the other hand, if we
choose Demand for a time slot, then the access cost for that slot will be
proportional to the number of read requests in that slot. Thus, the number
of writes in each time slot has no bearing on the cost when we choose either
Subscription or Demand. The optimal strategy that we devise will switch
between Demand and Subscription so as to minimize the expected access
cost over a given period of time.

In the time cost model it is insufficient to assume a probability for each of
the two types of relevant requests, as we did in the previous section. These
probabilities do not provide an indication as to the number of requests per
time slot. Thus, in the first subsection we assume an expected read-pattern
(i.e., an expected number of read requests for each time slot). We provide
an algorithm that assigns Subscription or Demand to each slot. In the
second subsection we assume that the expected number of reads per time
slot is unknown. However, the read pattern is estimated; that is, the
expected number of reads for a time slot can be estimated based on the
number of reads in a sliding window consisting of the latest k slots. Then
we consider the equivalent of the Sliding Window algorithm for the time
cost model. It assigns Subscription or Demand to time slots for estimated
read patterns. In the third subsection we extend the results of the first two
subsections to the case where Demand is available with cache invalidation.
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3.1 Expected Read Pattern

In this subsection we assume that we are given a finite sequence of time
slots and we are given a read-pattern, that is, the expected number of read
requests in each time slot. We present an algorithm, called Opt, for
selecting the optimal retrieval protocol in each time slot. The objective of
the Opt algorithm is to produce an allocation pattern, that is, to assign
Subscription or Demand to each time slot. This determines the retrieval
protocol used for the slot. We show that for the given read pattern, the
allocation pattern gives the minimum total cost over the sequence of time
slots. Consequently, the average cost per time slot is minimized.

The algorithm Opt initially computes the demand fees dfi for each slot i.
Here, dfi is computed as the product of the number of reads (nri) in the ith
slot and the demand access cost for a single read request (rc). After this, it
examines the slots one after another. After examining each slot, it either
immediately decides a Retrieval Protocol for the slot, or it keeps the
decision for the slot pending until it examines a sufficient number of future
slots. Thus, at any point in the execution of the algorithm, the sequence of
time slots can be divided into (1) the sequence of Decided slots that occur in
the beginning, followed by (2) the sequence of Undecided slots (i.e., slots
that have been examined but for which a decision is pending), followed by
(3) the sequence of Unexamined slots. The Decided slots are the slots for
which the Subscription or Demand protocol has been assigned. The algo-
rithm uses two variables status and FUS (first undecided slot). At any time
the status variable denotes the retrieval protocol assigned to the last
decided slot, and FUS gives the index of the first undecided slot. After the
termination of the algorithm, the array variable decision contains the
decisions that have been taken for each of the slots. Figure 1 shows the
classification of the different slots.

Initially, the status variable is assigned Demand. The algorithm Opt
scans the slots one by one, starting from the first. For each time slot i, it
computes (dfi 2 f f ), where dfi is the demand fee of the ith slot as
described previously, and f f is the flat fee per time unit. Assume that the
value of the status variable is Demand. If the demand fee (dfi) is less than
or equal to the flat fee ( f f ) (i.e., (dfi 2 f f ) # 0), the algorithm Opt
allocates Demand to the current (ith) slot. If the demand fee is greater than
the flat fee (i.e., (dfi 2 f f ) . 0), it means that Subscription is cheaper
than Demand. However, we cannot assign Subscription whenever this
condition is satisfied, because Subscription also involves the payment of the
initiation fee (i f ). So, we check whether the demand fee (dfi) is greater
than the flat fee ( f f ) by i f (i.e., dfi 2 f f $ i f ). However, if the condition
is not satisfied for a single slot, we cannot assign Demand to that slot. This

Fig. 1. Classification of slots.
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is because it may be possible to distribute or amortize the initiation fees
over a sequence of time slots so that Subscription is still better than
Demand. More specifically, the cumulative sum of (dfi 2 f f ) for a
sequence of consecutive slots may be greater than i f (i.e., ((dfi 2 f f ) $
i f ), although for each individual slot i the difference (dfi 2 f f ) 2 if may
be positive or negative. So, algorithm Opt proceeds to the next slot and
computes the cumulative sum (cs), cs 5 ((dfi 2 f f ).

In summary, when the value of the status variable is Demand (i.e., the
retrieval protocol assigned to the last decided slot is Demand), the Demand
protocol is assigned to all the Undecided slots, that is, from the First
Undecided Slot to the current (ith) slot, whenever cs # 0. If cs $ i f, then
Subscription is assigned to all the Undecided slots and the status variable
becomes Subscription. If neither of the foregoing conditions is satisfied, the
algorithm proceeds to the next slot, computes the cumulative sum, and
repeats the preceding operations.

If the status is Subscription, it means that the initiation fee has been
paid, and we can allocate Subscription to all the Undecided slots whenever
cs $ 0. If cs , 0, it means that Demand is cheaper for the Undecided
slots. However, we cannot choose Demand if u cs u , i f, because if we have
Subscription in an Unexamined slot, we would be paying more in switching
back to Subscription. Thus the algorithm Opt checks if u cs u $ i f; that is,
it checks if the initiation fee is recoverable. If so, the algorithm chooses
Demand for the Undecided slots.

In summary, when the status is Subscription, the Subscription protocol is
allocated to all the Undecided slots whenever cs $ 0. If cs , 0 and u cs u $
i f, then Demand is assigned to all the Undecided slots and the status
becomes Demand. If neither of the foregoing conditions is satisfied, the
algorithm Opt proceeds to the next slot, computes the cs, and repeats the
preceding operations.

If we are unable to arrive at a decision based on the cumulative sum and
we reach the end of the pattern, there are two possible cases, cs , 0 and
0 , cs , i f. In either case, the algorithm Opt chooses Demand for all the
Undecided slots. This is justified because, if cs , 0, Demand is cheaper
and if 0 , cs , i f, it means that the initiation fee is not recoverable.

A formal presentation of the algorithm is given in the following. In this
algorithm, n is the total number of time slots over which we are performing
the optimization.

The Algorithm Opt

{ For i 5 1 to n dfi 5 nri z rc
i;51
last;5n
status;5Demand
while i , last

{ cs ;5 0
FUS;5i
If status5Demand

{ repeat
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cs ;5 cs 1 (dfi 2 f f)
i ;5 i 1 1

until ((cs # 0) ~ (cs $ i f) ~ (i . last))
if (cs $ i f)
status;5Subscription
}

else
{ repeat

cs ;5 cs 1 (dfi 2 f f)
i ;5 i 1 1

until ((cs $ 0) ~ (cs $ 2i f) ~ (i . last))
if ((cs # 2i f) ~ (i . last))
status;5Demand
}

for j 5 FUS up to i 2 1
decision[j]5status
}

}

Now we prove the optimality of the Opt algorithm. For this, we need the
following definitions. We assume that the number of time slots n, and the
expected number of reads (nri) in each time slot i (for i 5 1, . . . , n) are
given. As indicated, we define an allocation pattern p to be a mapping that
associates a policy p(i), which is either Demand or Subscription, with each
time slot i. For the allocation pattern p, we define the number of initiations
of subscription, denoted nis( p), to be the number of times a subscription is
initiated in p; formally, nis( p) is the number of i such that p(i) 5
Subscription and either i 5 1 or p(i 2 1) 5 Demand. Now, we define the
cost of a single slot i as follows. If p(i) 5 Subscription, then the cost of i is
f f; otherwise, it is dfi (where dfi 5 nri z rc). Now, we define the cost of p,
denoted cost( p), to be the sum of the cost of all the slots plus nis( p) z i f;
note that we add the initiation fees corresponding to the number of
initiations of subscription. We say that an allocation pattern is optimal if it
has the least cost among all the allocation patterns.

THEOREM 7. The Opt algorithm computes an optimal allocation pattern;
that is, after termination of the Opt algorithm, the allocation pattern given
by the array decision is optimal.

PROOF. We prove the theorem by showing that the following property,
called INV, holds at the beginning of each iteration of the while loop; that
is, it is loop invariant.

(INV). There exists an optimal allocation pattern (for all n time slots)
which is an extension of the allocation pattern defined by the array decision
up to the first i 2 1 slots; that is, there exists an optimal allocation pattern
q such that q( j) 5 decision[ j] for j 5 1, . . . , i 2 1.

We prove that the property INV is loop invariant by induction on the
number of iterations of the while loop. The theorem would automatically
follow from this since at termination i 5 last 1 1.

Clearly, in the beginning (i.e., when we first enter the while loop), INV
vacuously holds. Now consider any particular iteration. Assume that i0, i1
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are the values of i before and after execution of this iteration of the while
loop. Assume that INV holds before the execution of the body of the while
loop, that is, for i 5 i0. Now, assume that p is such a pattern: p is an
optimal allocation pattern and p( j) 5 decision[ j] for j 5 1, . . . , i0 2 1.
We show that INV holds after the execution of this iteration when i 5 i1.
Clearly, i1 . i0. If p satisfies INV for i 5 i1, then we are done. So assume
that p does not satisfy INV for i 5 i1. Now we have the following cases. In
each case, we show the existence of an allocation pattern whose cost is
smaller than p and thus contradicts the assumption that p does not satisfy
INV for i 5 i1, or we exhibit another optimal pattern that satisfies INV for
i 5 i1.

Case A. The value of the status variable is Demand before execution of
the iteration. In this case, the first repeat statement is executed. We have
the following subcases.

(1) The repeat statement terminates because cs # 0 or i . last. In this
case, the algorithm assigns Demand for all the time slots from i0 up to
i1 2 1. Since we assumed that p does not satisfy INV for i 5 i1, there
exists at least one value of j such that i0 # j , i1 and p( j0) 5
Subscription. Let j0 be the smallest value such that i0 # j0 , i1 and
p( j0) 5 Subscription. Now, let p9 be another allocation pattern such
that p9( j) 5 Subscription for j 5 i0, . . . , j0 and p9( j) 5 p( j) for all
other j. It should be fairly easy to see that Cost( p9) # Cost( p); this is
because (( j5i0

( j021) (dfj 2 f f )) . 0 (if this were not the case the repeat
loop would have terminated earlier). Now, we define another allocation
pattern p0 whose cost is strictly smaller than p9, and hence that of p,
contradicting the optimality of p. We have the following two subcases.
(a) p9 changes the allocation policy back to Demand after j0 and before

i1; that is, there exists j1 such that j0 , j1 , i1 and p9( j1) 5
Demand. In this case, let j1 be the smallest such value. Define p0( j)
5 Demand for j 5 i0, . . . , j1 and p0( j) 5 p9( j) for all other values.
Now, Cost( p0) 2 Cost( p9) 5 (( j5i0

j121 (dfj 2 f f )) 2 i f. The second
term on the right-hand side accounts for the extra initiation fees in
p9; the first term is the difference in the sum of costs of each time
slot. It should be obvious that the first term, although positive, is
strictly less than i f (otherwise the repeat loop would have termi-
nated earlier). Thus, Cost( p0) , Cost( p9) and hence Cost( p0) ,
Cost( p), which contradicts the optimality of p.

(b) No j1 as specified in the previous subcase exists; that is, p9( j) 5
Subscription for all j 5 i0, . . . , i1. In this case, define p0( j) 5
Demand for all j 5 i0, . . . , i1 and p0( j) 5 p9( j) for all other values
of j. Now, it is easy to see that Cost( p0) # Cost( p9), and hence
Cost( p0) # Cost( p) and p0 is optimal. Clearly p0 satisfies INV for
i 5 i1.

(2) The first repeat statement terminates because cs $ i f. In this case,
the algorithm sets decision[ j] 5 Subscription for j 5 i0, . . . , (i1 2 1).
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Since p does not satisfy INV for i 5 i1, there exists at least one value of
j such that i0 # j , i1 and p( j) 5 Demand. Let j0 be the smallest j
satisfying the preceding condition. Let p9 be an allocation policy such
that p9( j) 5 Demand for j 5 i0, . . . , j0 and p9( j) 5 p( j) for all other
j. If j0 5 i0, then p9 and p are identical; otherwise, Cost( p) 2 Cost( p9)
5 i f 2 (( j5i0

( j021) (dfj 2 f f )) which is greater than zero as the second
term on the right-hand side is less than i f (otherwise, the repeat loop
would have terminated earlier). Thus Cost( p9) # Cost( p) and hence p9
is also optimal. Now we have the following subcases.
(a) The allocation pattern p9 switches to Subscription some time before

i1; that is, there exists a j such that j0 , j , i1 and p9( j) 5
Subscription. Let j1 be the smallest such j. Now, define p0 such that
p0( j) 5 Subscription for j 5 i0, . . . , j1 and p0( j) 5 p9( j) for all
other values of j. It is easy to see that Cost( p9) 2 Cost( p0) 5
( j5i0

( j121) (dfj 2 f f ) and this value is strictly positive; otherwise the
repeat loop would have terminated earlier. Hence the cost of p0 is
lower than that of p9 and p; this contradicts the optimality of p.

(b) The previous subcase does not hold; that is, p9( j) 5 Demand for j 5
i0, . . . , (i1 2 1). In this case, let p0 be an allocation policy such
that p0( j) 5 Subscription for j 5 1, . . . , (i1 2 1) and p0( j) 5
p9( j) for all other values of j. Now, Cost( p9) 2 Cost( p0) $ (( j5i0

(i121)

(dfj 2 f f )) 2 i f. The first term on the right-hand side of the
preceding inequality is greater than or equal to i f (due to the
termination condition of the repeat loop) and hence Cost( p9) $
Cost( p0) and hence p0 is also optimal. Clearly p0 satisfies INV for
i 5 i1.

Case B. The value of the status variable is Subscription before the
iteration. The proof for this case is similar to Case A.

Complexity. In the algorithm Opt, the total number of times the body of
either of the inner repeat statements is executed is at most n. This is seen
from the following analysis. The variable i is initialized to 1 and is
incremented in the body of the “repeat” loops; these are the only places i is
updated. Hence the total number of times the body of each “repeat” loop is
executed, over all iterations of the outer “while” loop, is n. Hence the total
number of iterations of the “while” loop is also n. It is also easy to see that
the total number of iterations of the inner “for” loop is at most n. Hence the
overall complexity of the algorithm is O(n), that is, linear in the number of
time slots. e

3.2 Estimated Read Pattern

This subsection considers estimated read patterns. The sequence of time
slots may be infinite. In an estimated read (write) pattern the expected
number of reads in the next time slot is estimated to be the floor average of
the numbers of reads (writes) in the last k time slots. This approach is an
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adaptation of the Sliding Window Protocol to the time cost model. A
side-effect of this approach is the extension of the Opt algorithm to infinite
sequences of time slots.

To deal with estimated read patterns we introduce the E_Opt algorithm.
In the Opt algorithm, in order to make an optimal policy decision for the
next time slot we needed the expected number of reads not only for the next
time slot but also for subsequent time slots; the reason is that we wanted to
know whether the initiation fee in the case of Subscription can be amor-
tized over many time slots. Thus, in the E_Opt algorithm we estimate the
expected number of reads in the next time slot and also in subsequent time
slots.

The allocation algorithm E_Opt is online. At the beginning of each time
slot it computes the estimated value of the number of reads for the next one
or more time slots, and uses these estimated values and runs the Opt
algorithm for selecting Demand or Subscription for the next time slot.

More specifically, at run-time, at the end of each time slot, E_Opt
computes the estimated number of reads for the next time slot. Then it uses
the Opt algorithm to check if a decision can be reached; if so, we use the
corresponding selection. Otherwise (i.e., if the slot is Undecided) E_Opt
computes the estimated values for the time slot after the next, and repeats
the foregoing procedure until a decision about the next time slot (which is
the First Undecided Slot) can be made, or until the sequence of estimated
number of reads converges. By convergence we mean that k successive
estimated values are identical; when this occurs all further estimated
values will be equal to these values. Later, we show that the sequence of
estimated values will eventually converge after a finite number of steps.

Now assume that the E_Opt algorithm has not reached a protocol
decision for the current time slot, until convergence of the sequence is
detected. Also assume that the convergence occurs after exactly j iterations
of the foregoing procedure. Let av be the value to which the sequence
converged. Assume the policy in the last time slot is Demand. The fact that
the algorithm E_Opt could not make a decision even after j iterations
indicates that the value of the variable cs at this time lies strictly between
0 and i f. If av z rc . f f, then if we repeat the procedure for a sufficient
number of times eventually the value of cs will be greater than i f; hence,
in this case, we switch to Subscription for the next time slot based on the
estimated number of reads. On the other hand, if av z rc , f f, then it is
easy to see that after a sufficient number of iterations of the procedure
eventually cs will equal 0; hence, in this case, we retain Demand for the
next time slot. If av z rc 5 f f, then the value of cs will remain unchanged
even after any number of iterations and will never cross i f; hence, in this
case also we retain Demand. On the other hand, if the policy in the last
time slot is Subscription, the E_Opt algorithm proceeds as follows. Since no
decision has been reached until convergence, it follows that the value of the
variable cs at that time lies strictly between 0 and 2i f. In this case, it
switches to Demand if av z rc # f f; otherwise, it retains Subscription.
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It is fairly straightforward to prove that the E_Opt algorithm is optimal
if the number of reads in all the future time slots are equal to the
corresponding estimated values.

Now we show that the sequence of estimated values converges.

LEMMA 1. Let a0, a1, . . . , ak21, ak, . . . , aj, . . . be a sequence of
positive integers such that for each i $ 0, ai1k 5 (ai 1 . . . 1 ai1k21)/k.
Further assume that max, min denote the maximum and the minimum of
a0, . . . , ak21. The sequence converges within (max 2 min) z k steps.

PROOF. It is easy to see that, for any i $ 0, ai1k , max{ai, ai11, . . . ,
ai1k21} and ai1k $ min{ai, . . . , ai1k21}. Now, we divide the sequence
into groups of k successive numbers. Consider the jth group for some j . 1.
The first member of this group is less than the maximum of the elements in
group ( j 2 1), and greater than or equal to the minimum of the elements
in group ( j 2 1). Now consider the second element of the jth group. Clearly
it is less than the maximum of the k elements that appear before it. Since
the first member of the jth group is less than the maximum of the elements
in group ( j 2 1), it follows that the second member of the jth group is also
less than the maximum of the elements in group j 2 1. By repeating this
argument inductively, it is easy to see that all members of group j, and
hence the maximum of these, are less than the maximum of the members of
group j 2 1. Similarly, it is easy to see that every member of group j is
greater than or equal to the minimum of the elements in group j 2 1.
Thus, we see that, in successive groups, the difference between the maxi-
mum and the minimum decreases by at least 1. Hence the sequence
a0, . . . , ai, . . . converges within k(max 2 min) elements. e

The following theorem shows that the sequence actually converges even
faster than indicated by Lemma 1. Lemma 1 is used in the proof of this
theorem.

THEOREM 8. Let a0, . . . , ai, . . . , referred to as the a-sequence, be a
sequence of positive integers such that for all i $ 0, ai1k 5 (ai 1 ai11 1
. . . 1 ai1k21)/k, and let max, min be the maximum and minimum of the
first k numbers in the sequence. This sequence converges within (log(max 2
min) 1 k)k steps; that is, for all i $ (log(max 2 min) 1 k)k, the values of ai,
ai11, . . . are all equal.

PROOF. In order to prove the theorem, we define another sequence of
integers d0, . . . , di, . . . , called the d-sequence, where di 5 ai 2 ai11.
Note that the integers di can be either positive or negative. Since, for each
i $ 0, ai1k 5 (ai 1 ai11 1 . . . 1 ai1k21)/k, it follows that there exists
a sequence of integers ck, ck11, . . . , ci1k, . . . such that 0 # ci1k , k and
the following equation holds.

ai 1 ai11 1 · · · 1 ai1k21 5 kai1k 1 ci1k. (A)

432 • A. P. Sistla, et al.

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.



Similarly, we have

ai11 1 ai12 1 · · · 1 ai1k 5 kai1k11 1 ci1k11. (B)

Subtracting the left- and right-hand sides of (A) and (B), we get (C).

di 1 di11 1 · · · 1 di1k21 5 kdi1k 1 ~ci1k 2 ci1k11!. (C)

Now we prove the following claim.

CLAIM. For every i $ 0, the following equality given by (D) holds.

di 1 2di11 1 · · · 1 jdi1j21 1 · · · 1 kdi1k21 5 ci1k. (D)

PROOF OF THE CLAIM. First we observe that the following equality (E)
holds.

ai11 1 2ai12 1 · · · 1 jai1j 1 · · · 1 kai1k

5 ai 1 2ai11 1 · · · 1 jai1j21 1 · · · 1 kai1k21 2 ci1k. (E)

The validity of Equation (E) is seen by substituting (ai 1 ai11 1 . . . 1
ai1k21 2 ci1k) in place of kai1k in the left-hand side of Equation (E) (this
is a sound substitution due to Equation (A)). Equation (D) follows directly
from (E) by moving ci1k to one side and all other terms to the other side of
the equality, and replacing each ai 2 ai11 by di, and so on. e

From (D), we have the following.

di1k21 5
1

k
~ci1k 2 di 2 2di11 2 · · · 2 jdi1j21 2 · · · 2 kdi1k22!. (F)

By substituting the expression given by (F) for di1k21 in Equation (C), and
by simple algebraic manipulation, we get the following equation.

di1k 5 x 1
1

k2
~di~k 2 1! 1 di11~k 2 2! 1 · · ·

1 di1j~k 2 j 2 1! 1 · · · 1 di1k22,
(G)

where x 5 ci1k11/k 2 ci1k/k 1 ci1k/k2. For any number y, let uy u denote
the absolute value of y. From Equation (G), we see that the following
inequality holds.

udi1ku # ux u 1
1

k2
max$ udiu, . . . , udi1k22u%~k 2 1 1 k 2 2 1 · · · 1 1!. (H)
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Since ci1k11 and ci1k are positive integers less than k, it follows that ux u
is less than 1. Using this observation and by replacing the sum (k 2 1 1
k 2 2 1 . . . 1 1) by k(k 2 1)/ 2 in (H), we get the following inequality.

udi1ku # 1⁄2max$ udiu, udi11u, . . . , udi1k21u%. (I)

The inequality (I) indicates that the absolute value of each di1k is less than
or equal to half of the maximum of the absolute values of the previous k
numbers. Now, we divide the d-sequence d0, . . . , di1k, . . . into groups of k
consecutive numbers. Now consider the jth group. Using (I), we see that the
absolute value of any number z in a group j is less than or equal to half of
the maximum of the absolute values of any of the previous k numbers; of
these k numbers some belong to group j 2 1 and others belong to group j;
now, by simple induction on the number of group j elements that appear
before z, it can easily be shown that the absolute value of each of them,
including that of z, is less than or equal to half of the maximum absolute
value of elements in group j 2 1. Since max, min are the maximum and
minimum of a0, a1, . . . , ak21, it is easy to see that the maximum absolute
value of any number in d0, . . . , dk21 is bounded by (max 2 min). It should
be easy to see that for j 5 log(max 2 min), the absolute value of all
elements in group j is less than or equal to 1.

In order to prove the theorem, we also divide the a-sequence a0, . . . ,
ai, . . . into groups consisting of successive k elements. From the preceding
argument, we see that for some j # log(max 2 min), the successive
elements in group j do not differ by more than one (this is because the d
values in this group have an absolute value less than or equal to 1). Hence
the maximum and minimum of the elements in group j differ by at most k.
From Lemma 1, we see that from group j onwards the a-sequence converges
within k2 elements. Hence from the beginning, the a-sequence converges
within (log(max 2 min) 1 k)k elements. e

In many practical situations the a-sequence converges faster than the
bound given by Theorem 8.

3.3 Demand with Cache Invalidation

In this subsection we assume that the Demand policy can be combined with
cache invalidation. Consider first the expected read-write pattern. The
algorithm Opt of Section 3.1 can be applied verbatim, using a revised
demand fee df. dfi is the minimum of the Demand cost for slot i as defined
in Section 3.1 (this corresponds to the case where cache invalidation is not
used), and the Demand-with-cache-invalidation cost. The Demand-with-
cache-invalidation cost, denoted dcii, is the cost of the read requests and
invalidation notifications in the ith slot. Each read in the slot that is
immediately preceded by a write, namely, a critical read, costs rc. Each
write in the slot that is immediately preceded by a read, namely, a critical
write, costs ic. The expected number of critical reads nc, assuming that
there are nr expected reads and nw expected writes in a time slot and
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assuming that they are uniformly distributed, is given as nc 5 (nr z
nw)/(nr1nw). Similarly, the expected number of critical writes is also nc.
Then dcii is nc z (ic 1 rc). With this revised demand fee, the algorithm
Opt can be applied verbatim for access cost optimization.

The algorithm that optimizes access cost for the estimated patterns can
also be applied verbatim using the so-revised demand fee.

4. DIVERGENCE CACHING

In this section we assume that some reads need not obtain the most recent
version of the object. We use the request cost model and the complexity
measures introduced in Section 2. Namely, the cost of satisfying a read
request sent from the client to the server is rc. The cost of propagating a
write (or an update) of the object from the server to the client is wc.

The complexity measure for the worst-case is competitiveness. If the
probabilities of the relevant requests are fixed and known, then the
complexity measure for the expected case is the expected cost of a relevant
request. Otherwise, as in Section 2, we use the average expected cost of a
request. The analysis of this case is performed experimentally.

Since reads need not obtain the most recent version of the object, the
analyzing algorithms are based on a new mechanism called divergence
caching. The mechanism is a hybrid between Subscription and Demand in
a sense that becomes clear shortly. Divergence caching uses the following
techniques for each object stored at the server.

—The first technique uses tolerant reads. In order to reduce access charges,
each read issued by a client is associated with a natural number
representing the divergence tolerance for the read. For example,
read(IBM,3) represents a request to read IBM’s stock price (i.e., the
object) with a tolerance of 3. This read can be satisfied by any of the three
latest versions of IBM’s stock price; in other words, it can be satisfied by
a version that is up to two updates behind the most recent version.
Formally, each write request creates a new version of the object. Each
read request has a tolerance t, specifying how recent a version of the
object is required. We denote such a read by r(t). We assume that the
read tolerance is an integer in the range 1, . . . , M, where M is known in
advance. A read tolerance of 1 indicates that the most recent version of
the object is requested; a read tolerance of k indicates that any of the last
k versions will do. A schedule is a finite sequence of requests, for
example, w, w, r(1), w, r(3), r(2), w.

—The second technique is automatic refresh. It means that the server has a
refresh rate for every client. For a natural number ,, a refresh rate of ,
means that the version of the object cached at the client is at most , 2 1
updates behind the version at the server. The server automatically
propagates to the client the ,th version since the last transmission of the
object to the client. The client saves the last version of the object it
receives from the server. Thus, those reads at the client with a tolerance
greater than , can be satisfied locally, that is, without access to the
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online database (so there is no charge). Therefore, charges are incurred
only for automatic refresh, and for each read with a tolerance that is
lower than ,.
The refresh rate can have any value between 1 and infinity. A refresh
rate of 1 means that the client has a regular copy of the object (i.e., the
client is on Subscription), and each update of the object is propagated to
the client. A refresh rate of infinity means that the client is on Demand,
and each read, regardless of its tolerance, will require a transmission
from the server to the client (even when the object has not changed since
the last read). For a finite refresh rate , . 1, the client behaves as if it is
on Subscription (i.e., it reads the local version) for reads with tolerance ,
and higher; the client behaves as if it were on Demand for reads with a
tolerance lower than ,. The optimal refresh rate, that is, the refresh rate
that minimizes the total read and write costs paid, depends on the ratio
between the frequency of updates at the server, and the frequency and
tolerance of reads at the client.

In this model, a read with tolerance less than the refresh rate costs rc,
and a read with tolerance greater than or equal to the refresh rate has zero
cost. A write costs wc if it is propagated to the client; otherwise it costs
zero.

To contrast this scenario with the ones in previous sections observe the
following. In the previous sections, at any point in time the client is either
on Subscription (and pays for the writes) or Demand (and pays for the
reads); it may switch between Subscription and Demand periodically. In
contrast, in the current scenario, at any point in time the client is on
Subscription for some reads (the ones with a tolerance higher than the
refresh rate) and on Demand for other reads. The client pays for the
Demand-reads, and for some of the writes (i.e., the ones that are trans-
ferred to the client).

We assume that pri
is the probability that a relevant request is a read

with a tolerance i, 1 # i # M. The probability that a relevant request is a
write is pw 5 1 2 (i51

M pri
. (That is, pw is the analogue of u in the

preceding sections.)
In this section we propose and analyze two divergence caching algo-

rithms, Static Divergence Caching (SDC) and Dynamic Divergence Caching
(DDC). The SDC algorithm works as described previously, and it has a
fixed refresh rate. A refresh rate of , means that the object is automatically
transmitted to the client every time the object has been updated by ,
writes, without having been sent to the client in the meantime. Thus, when
the refresh rate is ,, the client always has one of the , most recent versions
of the object in its local memory, and can satisfy any read request with a
tolerance of , or more with that local version.

One of the problems that we solve in this section is to determine the
optimal refresh rate for given probabilities of writes and reads of each
tolerance. This would have been easy if the server propagated to the client
exactly one in every , writes. However, a refresh rate of , does not
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necessitate that the server does so. For example, if the client solicits a
refresh (to satisfy a read with a low tolerance) after ,/2 writes, then that
refresh will reinitialize the refresh counter. In other words, an automatic,
or solicited, refresh will occur after , writes only if in the meantime there
was no solicited refresh.

The DDC algorithm is similar to the static one, except that the refresh
rate varies over time. It does so since we assume that the probability of
each type of request is unknown or it varies over time. Our DDC algorithm
learns these probabilities by “watching” a sliding window of read-write
requests, and based on it the algorithm continuously adapts the refresh
rate to the current request probabilities.

We analyzed the DDC algorithm experimentally. Details of the experi-
mental setup are given in Section 4.4. The experiments indicate that the
appropriate window size is approximately 23, in the sense that for a higher
window size the cost improvement is marginal. They also indicate that if
the request probabilities are fixed, then the DDC algorithm comes within
15–45% of the optimal SDC algorithm, that is, the static algorithm with
the optimal refresh rate for the given request probabilities. If the request
probabilities are fixed, then the DDC algorithm should be used when these
probabilities are unknown a priori; when the parameters are known and
fixed, one should use the optimal SDC algorithm. The experiments also
indicate that if the request probabilities vary over time, then the DDC
algorithm with a window size of 23 or higher has a cost that is approxi-
mately 30% lower than that of any static algorithm.

In addition to the expected case, we also analyze the worst case for both
algorithms, and we show that the DDC algorithm is superior to the SDC
algorithm in the sense that the DDC algorithm is competitive, whereas the
SDC is not competitive.

The rest of this section is organized as follows. In Section 4.1, we make a
detailed mathematical analysis of the Static Divergence Caching algorithm;
in particular, we determine the optimal refresh rate (i.e., the rate that
minimizes the expected cost of a request) for the case where the probability
distribution of the read and write requests is known and fixed over time.
Section 4.2 presents the Dynamic Divergence Caching algorithm, which is
appropriate when the probability distributions change over time or are
simply unknown. Section 4.3 gives a theoretical analysis of the worst case
complexity of the SDC and DDC algorithms and in Section 4.4 we give an
experimental analysis of the average expected cost complexity measure.

4.1 Fixed and Known Distributions

In this subsection we assume that the ps are fixed and known a priori, and
we are using the Static Divergence Caching algorithm. We develop the
expected cost of a request in the schedule as a function of the refresh rate,
and we show how to find the minimum of that function. This minimum is
the optimal refresh rate.

Our first goal is to compute the expected cost for any given fixed refresh
rate ,. The case , 5 ` is straightforward. The client pays rc for every read,
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and nothing for any of the writes. Thus the expected cost is rc(t51
M prt

. The
case , 5 1 is also straightforward; the client pays wc for each write and
nothing for any reads, so the expected cost is wc z pw.

Otherwise, for fixed integer 1 , , , `, we define a significant request to
be either a write or a read with a tolerance less than ,. Reads with a
tolerance at least , are called insignificant requests. Notice that the
insignificant requests have a zero cost, and some of the writes also have a
zero cost. However, as explained previously, the number of nonzero cost
writes is not (1/,)th of all the writes (that would make the derivation of the
optimal refresh rate easier).

The probability that a request is significant is pw 1 (t51
,21 prt

. Let R, be
the conditional probability that a request is a write, given that it is
significant. Using the formula for a conditional probability2 we get: R, 5
pw/( pw 1 (t51

,21 prt
). (Notice that R1 5 1 and RM11 5 pw.)

From here on in we condition all probabilities and expectations on the
event that the request being considered is significant. (At the end, we need
to multiply through by the probability of this event, which is pw 1 (t51

,21

prt
.)
The probability that an arbitrary request has a nonzero cost is: the sum

of the probabilities that the request is a significant read (which is clearly
1 2 R,), plus the probability that the request is a write which has a
nonzero cost. Hence we need to calculate the probability that a significant
request is a write that has a nonzero cost. Observe that a write in a
schedule has a nonzero cost only when the sequence of significant requests
leading up to and including that request is either a significant read
followed by , writes, a read followed by 2, writes, or a read followed by 3,
writes, and so on (otherwise the write has a zero cost). These events are all
disjoint, so the probability of any of them occurring is just the sum of the
probabilities of each. This sum in the limit is

Pr @Request is write that has a nonzero cost#

5 O
n51

`

~1 2 R,!~R,!
n, 5

~1 2 R,! R,
,

1 2 R,
,

.

Thus the expected cost of an arbitrary significant request is

E~cost! 5 ~1 2 R,!S rc 1 wc
R

,

1 2 R,
,D . (7)

2This formula is p(A/B)5p(A ù B)/p(B); in this case, since a write is a significant request,
p(A) 5 p( A ù B).
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Recall that this was conditioned on the request being significant, so the
actual expected cost of one arbitrary request is

S O
t51

,21

p 2 $r 2 t% 1 p 2 wD~1 2 R,!Src 1 wc
R,

,

1 2 R,
,D 5 O

t51

,21

prtSrc 1 wc
R,

,

1 2 R,
,D
(8)

since the first two multiplicands on the left-hand side are the probability
that a request is significant and the probability that a request is a read
with tolerance at most , given that it is significant.

Putting Equation (8) together with the extreme values for the refresh
rate we obtain that

THEOREM 9. For the SDC algorithm with refresh rate ,, the expected cost
of a request is:

E(cost) 5 5
wc z pw for , 5 1

O t51
,21 prtS rc 1 wc

R,
,

1 2 R,
,D for 1 , , , `

rc z O j51
M prj for , 5 `.

. (9)

COROLLARY 2. In the Static Divergence Caching algorithm the minimum
cost per request can never be achieved for any finite refresh rate greater than
M.

PROOF. The proof is straightforward based on the cost function in
Equation (9) that for any , . M the second line is bigger than the third
line. e

Thus, assuming that all the ps are fixed and known, the algorithm for
finding the optimal refresh rate is trivial. All one must do is compute the
M 1 1 different costs associated with the refresh rates 1, 2, . . . , M and `
according to Equation (9), and then choose the refresh rate that gives the
minimum cost.

4.2 The Dynamic Divergence Caching Algorithm

The Dynamic Divergence Caching algorithm works for probabilities ( ps)
that are unknown and that may vary over time. The algorithm varies the
refresh rate of an object x at the client. It does so by computing the ps
based on a window of the k latest relevant read and write requests, using
Equation (9) to recompute the optimal refresh rate, and establishing it as
the new refresh rate.

Now we explain the algorithm in detail. Recall that the relevant reads
are issued at the client, and the relevant writes are issued at the server. At
any point in time there is a refresh rate r. Each read at the client with a
tolerance higher than r is satisfied locally, and each read at the client with
a tolerance lower than r results in a refresh solicitation to be sent to the

Theory of Cost Management • 439

ACM Transactions on Database Systems, Vol. 23, No. 4, December 1998.



server; the server responds by refreshing x (i.e., sending the latest version
of x). The server also performs an unsolicited refresh of x when it receives
r consecutive write requests since the last refresh of x (this last refresh
may be either solicited or unsolicited).

Adaptation of the refresh rate occurs at each refresh point (solicited or
not), as follows. At every point in time, the server maintains the write-
sliding-window, that is, the set of timestamps of the last k write requests.
Each time a new write is received at the server its timestamp is added to
the write-sliding-window, and the smallest timestamp in the window is
deleted. At every point in time, the client maintains the read-sliding-
window, that is, the timestamp and tolerance of the k latest reads.
Specifically, the client maintains a set of k pairs (i, t), where i is a
tolerance and t is a timestamp.

When the client solicits a refresh, it piggybacks the read-sliding-window
on the refresh request. Before refreshing x, the server computes the new
refresh rate as follows. It uses the timestamps in the read-sliding-window
and the write-sliding-window in order to compute the request-numbers-
window; it is the number of writes denoted w, the number of reads with
tolerance 0 denoted r0, the number of reads with tolerance 1 denoted r1,
the number of reads with tolerance 2 denoted r2, and so on, for the last k
read-write requests. Then pw is taken as w/k, pr1

is taken as r1/k, pr2
is

taken as r2/k, and so on. Then the server uses Equation (9) in order to
compute the optimal refresh rate; this will become the new refresh rate.
The server responds to the refresh request, and it informs the client of the
new refresh rate by piggybacking this rate on the refresh response.

When the server performs an unsolicited refresh, it piggybacks the
write-sliding-window on the message. Using the write-sliding-window the
client computes a new refresh rate by computing the request-numbers-
window and the pw and prs as explained previously for the server. The
client uses Equation (9) in order to compute the optimal refresh rate; this
becomes the new refresh rate.

In Section 4.4, we analyze the DDC algorithm experimentally and
compare it with the SDC algorithm.

4.3 Worst Case Analysis

In this section we analyze the worst case behavior of the Dynamic Diver-
gence Caching and the Static Divergence Caching algorithms. We show
that the DDC algorithm is competitive, whereas the SDC algorithm is not.

We begin by presenting the optimal offline algorithm, called O. The
algorithm is optimal in the sense that its cost on any schedule of requests is
lower than the cost of any other algorithm. Let s be an arbitrary schedule.
Assume that at the beginning of s the client has the latest version of the
data object.

Offline algorithm O marks reads in the schedule as follows. The first
read that is marked is the first read r1 with a tolerance that is less than or
equal to the total number of writes that precede r1. The next read that is
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marked, r2, is the first read following r1 that satisfies the property: the
total number of writes between r1 and r2 is bigger than or equal to the
tolerance of r2. In general, the rith read that is marked is the first read
following ri21 that satisfies the property: the total number of writes
between ri21 and ri is bigger than or equal to the tolerance of ri.

After completing the marking, algorithm O determines the reads or
writes that will be transferred between client and server. This is done as
follows. If rc , wc, then the client sends to the server every marked read.
Otherwise, the server propagates to the client the last write that precedes a
marked read. All the other reads and writes are local, and consequently
incur zero cost. Thus, the cost of O is min(rc, wc) z N, where N is the total
number of marked reads.

For example, consider the schedule w, w, r(1), w, r(3), r(2), w, w, r(2).
In this schedule the third and ninth requests are the marked reads, and the
cost of O on the schedule is 2 min(rc, wc).

LEMMA 2. Algorithm O is an optimal offline algorithm.

PROOF. Consider a schedule s and an algorithm A, and suppose by way
of contradiction that A has a lower cost on s than O. Assume first that rc ,
wc. If A propagates some write w in s from the server to the client, then
the cost of A on s can be reduced. Instead of incurring the cost for w, incur
the cost on the first read that succeeds w; that is, transfer that read from
the client to the server. Thus, let us assume without loss of generality that
A incurs a cost only for reads. The first read for which A incurs a cost
cannot come after r1, namely, the first read on which O incurs a cost;
otherwise r1 will read a version for which it is intolerant. By induction it
can be shown that the ith read for which A incurs a cost cannot come after
ri, namely, the ith read on which O incurs a cost; otherwise ri will read a
version for which it is intolerant. Thus the cost of A cannot be lower than
the cost of O on s.

Assume now that wc , rc. Then we can assume without loss of
generality that A incurs a cost only for writes. As in the case rc , wc, it
can be shown by induction that the cost of A cannot be lower than the cost
of O on s. If wc 5 rc we can also assume without loss of generality that A
incurs a cost only for writes, and the previous argument holds. e

THEOREM 10. The Static Divergence Caching algorithm is not c-competi-
tive for any c . 0.

PROOF. We demonstrate that there exist schedules for which the ratio
cost (A)/cost(O) is unbounded. Assume first the fixed refresh rate of the
SDC algorithm is infinity. Construct a schedule that contains only reads
with tolerance 1. The cost of the SDC algorithm is equal to the number of
reads in the schedule; and the cost of Algorithm O on the schedule is 0. If
the fixed refresh rate is , , `, then construct a schedule that contains only
writes. Again, the cost of Algorithm O on the schedule is 0, but the SDC
algorithm will pay for every ,th request in the schedule. e
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In order to prove that DDC algorithm is competitive we need the
following lemma.

LEMMA 3. Let s be a schedule. Let B1, . . . , Bm be the blocks of
consecutive reads and writes in s, such that each block consists of either
only reads or only writes, and adjacent blocks contain different kinds of
requests. Then, between any two read requests marked by Algorithm O there
are at most 2(M 1 1) blocks.

PROOF. Consider two read requests marked by Algorithm O, r1 and r2.
Assume that there are more than 2(M 1 1) blocks between r1 and r2, and
consider the last read block Br, that precedes the block of r2. However,
there are more than M write blocks between r1 and Br, thus there are more
than M writes. The maximum tolerance of a read in Br is M, and this
contradicts the correctness of Algorithm O. e

THEOREM 11. The Dynamic Divergence Caching algorithm is c-competi-
tive for c 5 2(M 1 2)k max(wc, rc)/min(wc, rc).

PROOF. Assume that the window size of the DDC algorithm is k.
Consider any schedule s and break it into blocks as described previously.
Assume that there are l blocks in s. By Lemma 3, the cost of the algorithm
O on s is at least min(wc, rc) z l/(2M 1 2).

Now consider the cost of the DDC algorithm. For one read block the DDC
algorithm incurs a cost of at most k z rc, because after that the window will
contain entirely reads, so the algorithm’s estimate of pw will be 0 and it will
set its refresh rate to 1. Similarly, the DDC algorithm incurs a cost of at
most the k z wc for any one write block, because after k writes it will have
set its refresh rate to `. Thus, by Lemma 3, the competitiveness factor of
DDC is at most 2(M 1 2)k max(wc, rc)/min(wc, rc). e

4.4 Experimental Results

Mathematical analysis of the expected and average expected costs for the
DDC algorithm is not tractable: it is difficult to obtain closed-form solutions
and it may require additional assumptions. For these reasons, we take an
experimental approach to this problem. The goal of the experiments is to
compare the performance of the DDC algorithm with that of the optimal
SDC algorithm, that is, the SDC algorithm with a refresh rate which is
optimal for each schedule. Clearly, the optimal SDC algorithm is unobtain-
able if the request probabilities are unknown.

We have conducted many experiments where we randomly generated
schedules of requests, and compared the algorithms’ performance on those
schedules. In this section, we summarize the results. In both subsections
we compare the DDC and SDC algorithms on schedules of requests gener-
ated by Poisson processes. For all our experiments, we fixed the maximum
tolerance of any read, denoted M, at 20. We denote by lw the intensity of
the process that generated writes, and by lrj

(for 1 # j # 20) the intensity
of the process that generated reads with tolerance j. This model is obvi-
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ously equivalent to taking pw 5 lw/(lw 1 lr1
1 . . . lrM

) and pj 5 lrj
/(lw

1 lr1
1 . . . 1 lrM

).
We took wc to be 1, and rc to be 1 1 v for various nonnegative values of v.
The difference between the subsections lies in the selection of the input

schedules. In the first subsection the input schedules have fixed distribu-
tion parameters (ls), and in the second subsection they vary over time.

4.4.1 Fixed Distribution Parameters. We generated schedules of 1,600
requests, for each of 84 different values of the 21 parameters lw and lrj

for
1 # j # 20. For each schedule s we used Equation (9) to compute the
optimal refresh rate ks. Then we ran on s the DDC algorithm with various
window sizes, and the SDC(ks) algorithm.3

In Figure 2 we show a grand summary of the data—the average of all 84
runs, for the case where v 5 0. In particular, we plot the ratio of the
average (over all runs) cost of the DDC algorithm with window size k
(hereinafter DDC(k)) to the average cost of the SDC algorithm, as a
function of k. Notice that the threshold of the SDC algorithm differs from
schedule to schedule. The solid line at 1 represents the average cost of the
optimal static algorithm for each case.

The main result of these experiments is that the performance of DDC(k)
improves sharply as k increases to about 23, and for k $ 23 the cost of
DDC(k) is only 10–15% greater than the cost of the best static algorithm.
In fact, this pattern was observed for almost every schedule of the experi-
ment, although the graph in Figure 2 shows only data for all the runs
averaged together.

Two other important quantities are not shown in the graph. One is the
performance of the optimal offline algorithm. The average cost of the
optimal static algorithm was typically about 2.25 times the average cost of

3SDC(t) is the SDC algorithm with refresh rate t.

Fig. 2. Experimental results for fixed ls for v 5 0 case. Graph shows ratio of costs paid by
DDC(k) to costs paid by the optimal static algorithm.
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the optimal offline algorithm. Recall that the offline algorithm has the
advantage of seeing all the requests in advance, something that is impossi-
ble in real life.

We also compared the optimal static algorithm to the better (on the
particular run) of the static algorithms with refresh rates 1 and infinity.
This corresponds to traditional methods that do not allow for divergence
caching, but only for caching (refresh rate 1) or not caching (refresh rate
infinity). The optimal static algorithm showed, on average, a factor of two
improvement. This demonstrates the power of divergence caching. In other
words, being able to satisfy reads by out-of-date versions reduces the access
cost by a factor of two.

Note that the factor of two improvement is an average over 84 different
settings of the ls. For certain values of the ls a refresh rate of 1 or infinity
was the optimal value (typically with writes being either a very high or
very low percentage of all requests), and for certain values of the ls the
improvement with divergence caching was much greater than fourfold.

We also computed the performance of our algorithms for values of v
ranging from 0.1 to 0.9. We performed the same experiments as for the case
of v 5 0. The results were broadly similar.

4.4.2 Time-Varying Distribution Parameters. As we describe in Section
4.3, theory leads us to believe that if the ls change over time, then the
dynamic divergence caching algorithms will outperform all static algo-
rithms. We ran several experiments where we varied the ls over time, and
we summarize the results here. They confirm our expectation.

We begin with the case of v 5 0. A typical experiment is presented in
Figure 3, which reports the average of 40 runs of 1,600 requests each. In
each run, we picked each of the lrj

s uniformly at random from 1 to 100, and
then uniformly at random picked the fraction p of all requests that would
be writes. (Thus lw was set to be p times the sum of the lrs.) Every 157
requests, the ls were randomly assigned new values according to the same
rules.

We determined empirically which refresh rate gave the best performance
for the SDC algorithm over the 40 runs. In Figure 3 we plot the ratio of the

Fig. 3. Experimental results for time-varying ls for v 5 0 case. Graph shows ratio of costs
paid by DDC(k) to costs paid by the optimal static algorithm.
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average (over all 40 runs) cost of DDC(k) to the average cost of the SDC
algorithm with optimal refresh rate. The main result is that the cost of
DDC(k) improves with k, with considerable improvement up to around k 5
23, and slight improvement thereafter. For k $ 23, the average cost of
DDC(k) is roughly 70% of the cost of the best static algorithm.

The cost advantage of the DDC algorithms varied with the method of
changing the ls over time. If the ratio of writes to reads remained constant
over time, while the individual lrj

s varied, then the dynamic divergence
algorithms were only slightly better than the best static algorithm. On the
other hand, much larger improvements than those shown in Figure 3 were
found when we alternated periods where writes were at most 30% of all
requests with periods where writes were at least 70% of all requests. In
practice, alternating phases of read-intensive and write-intensive patterns
might be common.

5. RELEVANT WORK

This article does not fit neatly into an existing research discipline. How-
ever, one relevant research area is caching in various contexts, such as
networking and the World Wide Web,4 Client/Server databases (e.g., Zaha-
riousdakis and Carey [1997] and Franklin [1996]), distributed file sys-
tems,5 and distributed shared memory (e.g., Li and Hudak [1989] and
Nitzberg and Lo [1991]). However, our approach has some important
aspects whose combination is unique. First, we study cost models as an
independent concept, unrestricted by the limitations of a particular system,
protocol, or application. In existing studies, a particular environment often
restricts the caching options. Second, we study the cost of caching in both
weak consistency and strong consistency environments. Third, we take a
mostly analytical approach and we study both average and worst case
complexities. As far as we know, these aspects have not been studied in
combination in any of the existing works.

Another related research area is query processing in parallel and distrib-
uted databases (see, e.g., Franklin et al. [1996], Carey and Lu [1986], and
Srivastava and Elsesser [1993]). The relevance is in the sense that the
query shipping versus data shipping versus hybrid approaches in query
processing bear a resemblance to our subscription, demand, and sliding
window protocols. However, there are important differences. First, these
papers deal with query plans for relational operators, mainly joins, that
can be parallelized and pipelined. Second, they do not consider sequences of
database updates and queries, as we do in this article. Third, these papers
take an experimental approach, and thus they do not provide cost formulas.
And although there are quite a few mathematical cost analysis works in the

4See, for example, Liu and Cao [1997], Obraczka et al. [1996], Gwertzman and Seltzer [1995,
1996], Chankhunthod et al. [1996], Crovella and Carter [1995], and Guyton and Schwartz
[1995].
5See, for example, Levy and Silbershatz [1990], Kistler and Satyanarayanan [1991], Popek et
al. [1990], and Gray and Cheriton [1989].
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database literature (e.g., Christodulakis [1983, 1984] in the area of perfor-
mance evaluation of a centralized physical database design) our problem
has not been considered previously using a similar approach to ours.

Regarding our worst case analysis of the protocols, the closest problem
addressed in the theoretical computer science community is called rent-to-
buy, or the ski-rental problem (see Irani and Karlin [1997]); assuming that
the cost of renting a pair of skis is r and the cost of buying it is b, after how
many rentals should one buy the skis (assuming that the number of future
skiing events is unknown). There it is shown that the following algorithm is
2-competitive, and this competitiveness coefficient is optimal. The algo-
rithm rents the pair of skis b/r times, and then it buys it. The difference
between the rent-to-buy and subscription-demand is that after buying, no
additional cost is incurred; on the other hand, in switching between
subscription and demand one switches between paying for writes and
paying for reads, but in no case are all future requests (events) free of
charge.

In the AI literature, work that is close to our approach appears under the
subject of negotiation (see Rosenschein and Zlotkin [1994] for a good
introduction to the subject and a survey of the relevant literature). The
difference is that we are concerned with the problem of choosing a minimal-
cost retrieval protocol (e.g., Subscription or Demand) from a fixed set of
candidates, whereas the AI work is concerned with the protocol of arriving
at a mutually agreed price. In other words, we assume that the object
owner has fixed several pricing options, one of which is selected by the
buyer. The AI work assumes that these options are subject to negotiations.
We feel that our approach is closer to the existing commercial model of
business. For example, the phone companies have several cost plans,
among which the customer selects one, without negotiation. In the data-
base literature, an approach similar to ours was proposed in Sidel et al.
[1996]. That paper has also put price negotiation at the heart of its method.

Finally, some of our results are based on preliminary work published in
Huang et al. [1994a,b] and Sistla et al. [1996], although the cost models in
the present article are different.

6. DISCUSSION AND CONCLUSION

In general there are two basic business models for information providers;
advertiser paid and customer paid. In existing media both models coexist,
for example, newspapers and cable TV. Based on this we predict that a
similar coexistence will occur in future digital libraries. In this article we
addressed the issue of cost management/optimization in the customer paid
business model.

Some specific digital library applications of our work include various
forms of electronic news services, such as stock trading and electronic mail
services. In the case of stock trading, an object is information (including
price) of a particular stock or a group of stocks. In other cases the object
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may be a more complex data structure such as a view or a queue. For
example, the object may be a queue of news items that satisfy a particular
filter, or it may be an electronic mailbox.

Other applications of our work include data warehousing and cache
management on the Web. In data warehouses, which maintain views on
data from various sources, the views need to be kept up to date by getting
new data. A new version here is not a complete new copy, but an incremen-
tal change from the previous one. Subscription versus Demand corresponds
to the terminology of “push” versus “pull” used in this context. The results
also apply for cache management on the Web.

We introduced complexity measures and analyzed retrieval protocols for
two cost models, the request cost model and the time cost model. In these
cost models we considered the Subscription, Demand, Demand-with-cache-
invalidation, and Sliding Window protocols. These protocols can be em-
ployed by a client to access an object at the digital library server. The first
two protocols are static in the sense that an object is either cached or it is
not; the last two protocols are dynamic in the sense that an object may be
cached at some time, and not cached at another time. The protocols are
different in the two cost models, and they also vary depending on whether
each read of the object must be consistent, that is, access the latest version
of the object.

It is important to emphasize that the set of cost models and protocols
considered in this article is far from being exhaustive. Many other scenar-
ios are conceivable, and this article should be regarded as a demonstration
of our proposed approach to the problem of cost management in accessing
digital libraries. For the rest of this section we summarize the results of
our analysis.

First consider an object accessed in the request model using consistent
reads. Assume that at any point in time the probability is u that the next
relevant access of the object is a write at the server (thus the probability is
1 2 u that the next relevant access of the object is a read at the client). If u
is fixed and known a priori, then the protocol that has the optimal expected
cost depends on the costs of a read rc, a write wc, and an invalidation
notification ic. These results are summarized in Corollary 1. If u is
unknown or it varies over time, then the Demand and Subscription static
protocols are suboptimal. For the dynamic protocols, the average expected
cost results are summarized in Section 2.2.2. If the relevant requests are
chaotic (i.e., do not follow a probabilistic pattern) and the objective is to
reduce the worst case cost, then again one of the dynamic protocols is
optimal; the one with the lowest competitive ratio can be computed based
on rc, wc, and ic using Theorems 5 and 6.

Now consider an object accessed in the time cost model using consistent
reads. Here the problem is to select between Subscription and Demand
(possibly with cache invalidation) for each time slot; in contrast to the
request cost model, the switch between the two protocols cannot occur in
the middle of a slot, only at time-slot boundaries. This gives rise to a totally
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new set of concerns. The first problem is to determine the protocol with
minimum expected cost for each time slot, assuming that we are given the
number of expected relevant requests in a time slot. In Section 3.1, we
devise an efficient algorithm that determines the optimal policy for each
time slot, such that the average cost per time slot is minimized. In Section
3.2, we devise the Sliding Window algorithm for this model. Cache invali-
dation is combined with the Demand protocol in a straightforward manner
(see Section 3.3). Again, the issues are totally different from the request
cost model.

Finally, we consider an object in the request cost model using tolerant (or
inconsistent) reads, that is, reads that can tolerate an out-of-date version of
the object. It turns out that straightforward use of Subscription and
Demand cannot take advantage of such reads in order to reduce cost.
Therefore, for this environment we propose a hybrid mechanism between
Subscription and Demand. In the previous scenarios, at any point in time
the client is either on Subscription (and pays for the writes) or Demand
(and pays for the reads); it may switch between Subscription and Demand
periodically. In contrast, in the request cost model using tolerant reads, at
any point in time the client is on Subscription for some reads and on
Demand for other reads, depending on the tolerance of the read. The client
pays for the Demand-reads, and for some of the writes. We call this Static
Divergence Caching (SDC). The first problem that we solved in this model
is determining (for given probabilities of the relevant requests) the optimal
refresh rate of SDC, that is, the optimal lower bound on the tolerance of the
Subscription reads (Equation (9)). For the case where the probabilities of
the relevant requests are unknown or they vary over time, we devised the
Sliding Window algorithm for this model, called Dynamic Divergence
Caching (DDC) (Section 4.2). We showed that for optimizing cost in the
worst case the DDC algorithm is better than SDC (Theorems 10 and 11).
Finally we analyzed the DDC and SDC algorithms by simulations. We
showed that tolerant reads improve the cost compared with nontolerant
reads by a factor of two. We also showed that when the relevant probabili-
ties are fixed but unknown, the cost of the DDC algorithm is almost as good
as that of SDC with the optimal refresh rate (Section 4.4.1). On the other
hand, when the relevant probabilities vary over time, the cost of the DDC
algorithm is 70% of the cost of the SDC algorithm having the optimal
refresh rate. (Section 4.4.2).

We believe that in the future information appliances will come equipped
with a cost optimizer in the same way that computers today come with a
built-in operating system. Similarly, customer agents searching for infor-
mation may be equipped with similar optimizers. This article makes the
initial steps towards a theory and practice of cost management and
optimization in accessing information. Such a theory and its implications
may become critical for the information economies of the future. Much
remains to be done in terms of new cost models, protocols, a unifying
theory, and the development of cost management systems.
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APPENDIX

Following are the proofs of Theorems 3 and 4.

THEOREM 3. For the WSWk protocol, the average expected cost per request
is given by

AVGWSWk 5
wc~L 1 1!~L 1 2! 1 rc~k 2 L!~k 2 L 1 1!

2~k 1 1!~k 1 2!
. (10)

PROOF. The derivation of Equation (10) is obtained as follows. First,
from Equation (4) we see that

EXPWSWk~u ! 5 ~1 2 u ! z rc 2 ak z rc 1 ~wc 1 rc! z u z ak . (11)

From Equation (11) and using AVGWSWk
5 *0

1 EXPWSWk
du, we get the

following equation after some simplification.

AVGWSWk 5
rc

2
1 ~wc 1 rc! z E

0

1

akQdu 2 rc z E
0

1

akdu . (12)

Using Equation (3), we see that

E
0

1

akdu 5 O
j50

L Sk
j D z E

0

1

u j z ~1 2 u !k2jdu . (13)

Using the following identity, for nonnegative integers a and b,

E
0

1

xa z ~1 2 x!bdx 5
a! z b!

~a 1 b 1 1!!
(14)

and after some simplification, we get

E
0

1

akdu 5
L 1 1

k 1 1
. (15)

Similarly, we can show that

E
0

1

ak z udu 5
~L 1 1!~L 1 2!

2~k 1 1!~k 1 2!
. (16)

Using Equations (15) and (16), and substituting for *0
1akdu and *0

1 ak z
udu in Equation (12), we get (10) after some simplification. e
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THEOREM 4. limk3` AVGWSWk
5 (wc z rc)/(2(wc 1 rc)). Furthermore,

for all k $
1
4 ((wc/rc) 1 (rc/wc) 2 6), AVGWSWk

is bigger than (wc z
rc)/(2(wc 1 rc)).

PROOF. We modify Equation (10) as follows. Let us define l to be
rc/(wc 1 rc). We first observe that L 5 k z l and hence L can be written
as k z l 2 d where 0 # d , 1; more precisely d 5 k z l 2 L. Replacing L by
k z l 2 d in Equation (10), after a series of simplifications we get the
equation:

AVGWSWk 5
wc z l

2
1 X 1 Y, (17)

where

X 5
k z wc z l

2~k 1 1!~k 1 2!
1

2wc2

2~wc 1 rc!~k 1 1!~k 1 2!
(18)

and

Y 5
d~rc 2 3wc! 1 d2~wc 1 rc!

2~k 1 1!~k 1 2!
. (19)

From the preceding equation we see that the limits of X and Y both go to
zero as k goes to `. Hence, we get limk3` AVGWSWk

5 wc z l/ 2 5 wc z
rc/(2(wc1rc)).

To prove the second part of the theorem, we first observe that in the
preceding equation it is possible for Y (and hence X 1 Y) to become
negative; this may cause AVGWSWk

to be less than the asymptotic value for
some k. However, when k is greater than or equal to some value, X 1 Y
will be positive. This happens when X 1 Y $ 0, that is, when

k z wc z l 1
2wc2

~wc 1 rc!
1 d~rc 2 3wc! 1 d2~wc 1 rc! $ 0. (20)

If rc . 3wc, then all the terms on the left-hand side of the preceding
inequality are positive and hence the inequality is satisfied for all k $ 0.
Now assume that rc , 3wc. Now consider the sum d(rc 2 3wc) 1
d2(wc 1 rc) in the preceding inequality. It can be shown that the minimum
value of this sum is 2(3wc2rc)2/(4(rc1wc)) (to see this, take the deriva-
tive of the sum with respect to d; this derivative is zero when d 5
(3wc2rc)/(2(rc1wc)); substituting this d in the sum we get the preceding
minimum value). Substituting this minimum value for d(rc 2 3wc) 1
d2(wc 1 rc) in the inequality (20), and after some simplification, we see
that X 1 Y $ 0 when k $

1
4 ((wc/rc) 1 (rc/wc) 2 6). This proves the

second part of the theorem. e
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