Competitive Analysis of Caching in Distributed Databases*

Ouri Wolfson and Yixiu Huang
Electrical Engineering and Computer Science Department
University of Illinois

Chicago, Illinois 60607

*A preliminary version of this paper has appeared in the Proceedings of the 10th International Conference on Data Engi-
neering, Feburary 1994, Houston, Texas. This research was supported in part by Grants NSF IRI-9224605, NSF IRI-9408750,
DARPA N66001-97-2-8901, NATO CRG-960648, AFSOR F49620-93-1-0059.

Abstract

This paper makes two contributions. First, we introduce a model for evaluating the performance
of data allocation and replication algorithms in distributed databases. The model is comprehen-
sive in the sense that it accounts for I/0 cost, for communication cost, and, because of reliability
considerations, for limits on the minimum number of copies of the object. The model captures ex-
isting replica-management algorithms, such as read-one-write-all, quorum-consensus, etc. These
algorithms are static in the sense that, in the absence of failures, the copies of each object are

allocated to a fized set of processors.

In modern distributed databases, particularly in mobile computing environments, processors will
dynamically store objects in their local database and will relinquish them. Therefore, as a second
contribution of this paper, we introduce an algorithm for automatic dynamic allocation of repli-
cas to processors. Then, using the new model, we compare the performance of the traditional
read-one-write-all static allocation algorithm, to the performance of the dynamic allocation algo-
rithm. As a result, we obtain the relationship between the communication cost and 1/O cost for
which static allocation is superior to dynamic allocation, and the relationships for which dynamic

allocation is superior.

Key words: object allocation, caching, distributed database, mobile computing, wireless communi-

cation, competitiveness.

1. Introduction

In a distributed database an object is usually replicated in the local database of multiple processors for
performance and availability. The object is accessed, i.e. read and written, from multiple geographically
distributed locations.

In this paper we analyze the cost of servicing a set of read-write requests for a replicated object. This set
of requests is usually ordered by some concurrency-control mechanism, such that each read request accesses
the most recent version of the object (i.e. the version written by the most recent write request). The cost of
servicing a read or write request depends on the allocation scheme of the object, namely the set of processors
that store the most recent version of the object in their local databases. For example, if a reading processor
is in the allocation scheme, then the read can be satisfied locally; otherwise it must be satisfied from a
remote processor, and it becomes more expensive.

The allocation scheme of an object is either dynamic or static, namely it either changes as the read-write
requests are executed, or it remains fixed. The reason for changing the allocation scheme is that the larger
the allocation scheme the smaller the cost of an average read-request, and the bigger the cost of an average
write request. Thus, in a read-intensive environment a large allocation scheme is mandated, whereas in a
write-intensive environment a small allocation scheme is mandated. Caching is a particular form of dynamic
allocation in which a processor that reads an object saves a copy of that object, and thus it joins the
allocation scheme. In this paper we study caching in a peer-to-peer (rather than client server) environment.

The main results of this paper concern caching, however we discuss this in the larger context of dynamic
allocation. More specifically, we discuss dynamic allocation performed by Distributed Object Management
(DOM) algorithms. A DOM algorithm maps each request to a set of processors that execute the request,
and it determines the allocation scheme of the object at any point in time. We distinguish between online
and offline DOM algorithms. An offline DOM algorithm, when servicing a request, has a priori knowledge
of all the future requests. An online algorithm does not do so. In this paper we compare the cost of static
and dynamic online algorithms. We do so by a worst-case comparison of an online algorithm to an optimal,
ideal offline algorithm.

Our worst case analysis of replication is performed in two cost models. In one, the stationary-computing
(SC) model, each read/write request has a cost in terms of both communication and I/O. For example, a
write request of the object usually results in the transmission of the update to multiple processors that store

copies of the object; this involves communication cost. Furthermore, each one of these processors outputs

the object to its local database; this involves an I/O cost.

In the mobile-computing (MC) model, the cost of read and write requests represents a dollar value for
communication. The wireless network provider usually charges a fee per wireless message, and this fee
depends on the length of the message. For example, RAM Mobile Data Co. charges 4 cents for a two-
character message, and 12 cents for a 450-character message. Therefore the cost of a write is the dollar cost
expended to transmit the write to the mobile computers caching replicas of the object.

The rest of the paper is organized as follows. In section 2 we introduce a dynamic online algorithm, and
summarize the results of this paper. In section 3 we present the model, we formalize the cost function, and
we define distributed object management algorithms. In section 4 we define the static and dynamic online
algorithms in terms of the proposed model, and we analyze them. In section 5 we discuss practical issues
(e.g. failures) concerning dynamic allocation. We also discuss extensions of the model beyond reads and
writes. In section 6 we compare our work with relevant literature. Finally, in section 7 we summarize and

discuss our results.

2. Results Summary

In this paper we achieve two objectives. First, we propose a model and a methodology to analyze and
compare online DOM algorithms. Basically, the proposed methodology to show that DOM algorithm A is
superior to DOM algorithm B, is as follows. First, show that A is a-competitive, i.e., there exists a constant
a > 1 such that for any sequence s of read-write requests: (the cost of A on s) < a x (the cost of the
optimal offline DOM algorithm on s). Then, show that B is not a-competitive, i.e., that there are sequences
of requests for which (the cost of B) > a x (the cost of the optimal offline DOM algorithm). This means
that in the worst case the cost of A is lower than the cost of B. !

The second objective of this paper is to introduce a new DOM algorithm, namely Dynamic Allocation
(DA), and to compare it with the traditional read-one-write-all Static Allocation (SA) DOM algorithm. The
comparison is performed using the methodology discussed above. Both the SA and the DA algorithms are

on-line, in the sense that they do not know the sequence of the requests a priori.

!This type of worst case analysis is useful in real-time systems that have to work under worst-case assumptions. It is useful
when, for example, the objective is to avoid overloading/crashing a distributed system of a given capacity. Such overload-
ing/crashing may occur when the I/O or communication queues suddenly begin to grow unboundedly bringing the system to

its knees. An algorithm with a better worst-case behavior has a smaller chance of creating such an overload condition.

In addition to performance, a DOM algorithm is also affected by availability considerations. We assume
that the SA and DA algorithms are subject to the following availability constraint: ”For some integer ¢ which
is greater than 1, the allocation scheme must be of size which is at least ¢”. In other words, ¢ represents
the minimum number of copies that must exist in the system. If the maximum number of processors that
are expected to be “down” at any point in time is d, and availability dictates that at least one copy of the
object be “up”, then ¢ is set to d + 1.

In subsection 2.1 we present and discuss the SA and DA algorithms, and in subsection 2.2 we summarize
the results of the comparison between them.

2.1 Algorithms description

In the SA and DA algorithms, a set of processors act as servers of an object 0. Even so, we do not
assume a client-server environment. The algorithms can be incorporated in a peer-to-peer system in which
the set of servers differs from object to object.

In a mobile computing environment the servers may be mobile. Indeed, with mobile computers becoming
more reliable and better connected, it may be reasonable to have the whole database distributed among
mobile computers.

Basically, DA differs from SA in the fact that it uses caching. More specifically, in DA a client caches
the object that it reads; any write invalidates the cached copies.

Static Allocation: At all times, SA keeps a fixed allocation scheme () which is of size ¢t. All the
processors in the system know which are the processors of). SA performs read-one-write-all. Namely, in
response to a write request issued by a processor p, SA sends the object from p to each one of the processors
in @. In turn, each processor of () outputs the object in its local database. In response to a read request
issued by a processor p, SA requests a copy of the object from some processor y € @; in turn, y retrieves
the replica from its local database and sends it to p. O

Dynamic Allocation: The DA algorithm receives as parameters a set F' of t — 1 processors, and a
processor p that is not in F'. The processors of F' are called the servers, and p is called the floating processor.
All the processors in the system know the id of the processors in F' U {p}. The initial allocation scheme
consists of F' U {p}. Subsequently, at any point in time all the servers are in the allocation scheme, and
at least one additional processor is there as well; however, the floating processor is not necessarily in the
allocation scheme. So, for example, for nonserver nonfloating processors ¢ and r, F'U {q} U{r} is a possible

allocation scheme at some point in time.

The DA algorithm services read and write requests as follows. A read request from a processor of the
allocation scheme is satisfied by inputing the object from the local database. A read request from a processor
r outside the allocation scheme is satisfied by requesting a copy of the object from some server processor u;
r saves the object in its local database (thus joining the allocation scheme), and u remembers that r is in the
current allocation scheme by entering r in u’s ”join-list”. The join-list of u consists of the set of processors
that have read the object from wu since the latest write.

A write request from some processor g outputs the object to the local database at ¢, and sends it to all
the servers; then each server outputs the object in its local database. If ¢ is a server, then ¢ also sends a
copy of the object to the floating processor (in order to satisfy the availability constraint). 2 Additionally,
the write request results in the invalidation of the copies of the object at all the other processors (since their
version is obsolete). This is done as follows. Each server, upon receiving the write, sends an ’invalidate’
control-messages to the processors in its ”join-list”; except that, obviously, if ¢ is in some join list, the
invalidation message is not sent to q. To summarize the effects of a write, consider the allocation scheme
A immediately after a write from a processor g. If ¢ is in F' then A = F U {p}, and if g is not in F then
A=FU{q}. O

The DA algorithm differs slightly from the standard caching-with-write-invalidation in a client-server
system. The difference is that in addition to the processors in F, i.e. the server processors, at every point in
time there are other processors in the allocation scheme. However, the other processors are not fixed, and
they vary depending on the read-write pattern. The reason for this difference from a client server system
is that in a peer to peer system it is more efficient to make a writing processor a member of the allocation
scheme.

The SA and DA algorithms may be incorporated in a transaction-oriented system that ensures serial-
izability by using a concurrency control mechanism, such as two-phase-locking. In this case a copy of the
object is locked before being read, written, or invalidated.

2.2 Cost Comparison of the SA and DA Algorithms

Assume that the I/O cost of servicing an access request, i.e. the cost of inputting (outputting) the object
from (to) the local database, is c;j,. This means that the average I/O cost of a database read or write in the
distributed system is ¢;,. This does not mean that every read and every write results in an I/O to disk. For

example, if buffering in the distributed system is such that on average one in every 10 reads/writes results

2Observe that if g is not a server, then the availability constraint is satisfied since ¢ has the latest version of the object.

in a disk access, then the I/O cost of a read or a write is 1/10th the cost of a disk access. The cost of a
disk access is the additional load that the operation puts on the distributed system. For example, if an I/0O
operation takes one time unit and the distributed system can perform 10,000 I/O’s per time unit, then the
cost of a disk access is 1/10000.

In terms of communication, there are two types of messages associated with servicing access requests,
control-messages and data-messages. An example of a control message is a request message, in which a
processor p (that does not have a copy of the object) requests another processor ¢ to transfer a copy of the
object to p. A data message is a message in which the object is transmitted between processors. Control
messages are usually much shorter than data messages, therefore, different costs are associated with the two
types of messages. The communication cost of a control-message is c., and the communication costs of a
data-message is cg4.

In section 6 we will discuss how the DA algorithm copes with failures, but the cost-comparison results,
discussed next, are obtained for the SA and DA algorithms operating in the normal mode, namely, in the
absence of failures. For simplicity, in the stationary-computing model we normalize the cost by taking c;,=1.
This means that c. is the ratio of the cost of transmitting a control message to the I/O cost of a read-write
request. Similarly, ¢4 is the ratio of the cost of transmitting a data message to the I/O cost of a read-write
1request.3

In the stationary-computing model we obtain the following results. We show that the SA algorithm
is (14c.+cq)-competitive. Then we show that the DA algorithm is (242 - ¢.)-competitive in general, and
that the DA algorithm is (2+c.)-competitive when ¢4 > 1. Interestingly, these competitiveness factors are
independent of the integer ¢ which limits the minimum number of copies in the system. Then we show that
the SA algorithm is not y-competitive for any v < 1 + ¢, + ¢4. Therefore, when ¢4 — 1 > 0 (i.e., when the
cost of a data-message is higher than the I/O cost) the DA algorithm is superior to the SA algorithm, since
in this case 1 + ¢, + ¢4 > 2 + ¢.. Then we show that the DA algorithm is not 1.5-competitive. Therefore,
when ¢4 + ¢, < 0.5 the SA algorithm is superior to the DA algorithm, since in this case 1 + ¢, + ¢4 < 1.5.

The results of the comparison are summarized in figure 1. The figure indicates the area on the ¢, and

¢q plane for which the SA algorithm is superior, and the area for which the DA algorithm is superior. The

30bserve that this formulation ignores storage cost. This is justified when storage is abundant, e.g., when each node has
enough capacity to store a copy of each object in the database. When this is not the case it may be possible to include the
storage cost in the I/O cost as follows. If on average the cost of storing a copy of the object for a time unit is 1/50000, and on

average there is one local database I/O per time unit, then the I/O cost increases by 1/50000.

area in which ¢, > ¢4 is marked ” Cannot be true”, since a data message cannot be less costly than a control
message. The reason for this is that the control message includes the object-id and operation (read, write,
or invalidate) fields only, whereas the data message includes the object-id and operation (read, write, or
invalidate) fields, as well as the object content. The area marked ”Unknown” represents the c. and ¢4 values
for which it is currently unknown whether the DA algorithm is superior to the SA algorithm or vice versa.
The reason for this uncertainty is the gap between the upper and lower bound on the competitiveness of the

DA algorithm.

o1 C o1 Ce
Cannot be %) Cannot be
rue SA is superior true
1+ 1L
/A
DA is superior
_AUnknown
1 ,Cq / Cuy
1 2 1 2
Figure 1. Figure 2.
Stationary-computing cost model Mobile-computing cost model

Then we consider the MC model. In this model the I/O cost is zero, the data-message cost is ¢q and
the control-message cost is ¢.. We show that in a mobile computing environment the DA algorithm is
(2+3- g—;)—competitive, whereas the SA algorithm is no longer competitive. Thus, in such an environment
the DA algorithm is strictly superior to the SA algorithm. Figure 2 illustrates this dominance of DA over
SA.

3. The Model

3.1 Schedules and Allocation Schemes

A distributed system is a set of interconnected processors. The local database at a processor is a set of
objects at the processor. Transactions operate on the object by issuing read and write requests. In this
paper we address the allocation of a single object. A schedule is a finite sequence of read-write requests to
the object, each of which is issued by a processor. For example, 1)y = w?r*wr'r? is a schedule in which the
first request is a write from processor 2, the second request is a read from processor 4, etc.

In practice, any pair of writes, or a read and a write, are totally ordered in a schedule, however, reads

can execute concurrently. Our analysis using the model applies almost verbatim even if reads between two
consecutive writes are partially ordered.

Each write request in a schedule creats a new version of the object. Given a schedule, the latest version
of the object at a request q is the version created by the most recent write request that precedes ¢.

Each request is mapped to a set of processors, namely the ezxecution set of the request. Intuitively, for
a write request the execution set is the set of processors which output the written object to their local
database. For a read request the execution set is the set of processors from which the object is retrieved to
satisfy the request.*

An ezecution schedule is a schedule of requests, each with its associated execution set. For example,
& = w?{2,3}, r*{1,2}, w3{2, 3}, r'{1,2}, r?{2} is an execution schedule of 1)y, where {2, 3} is the execution
set of the first request w?, {1,2} is the execution set of the second request 74, etc.

A read request brings the object to main memory of the processor that issued the read request, namely
the reading processor. In case of dynamic allocation, the reading processor, s, may also store the object in
its local database, in order to enable future reads at s to be local. A read request that results in saving the
object in the local database is called a saving-read.

An allocation schedule is an execution schedule in which some reads are converted into saving-reads. A
saving-read is denoted by an underlined read in the allocation schedule. For example, by converting the
fourth request in &, into a saving-read, we obtain an allocation schedule ¢g = w?{2, 3}, r*{1,2}, w?{2,3},
r'{1,2}, r2{2}. Observe that at the end of this allocation schedule the object is stored in the local databases
of processors {1,2,3}.

The initial allocation scheme is a set of processors. Intuitively, it is the set of processors that have the
object in their local database before the schedule begins. Given an allocation schedule, the allocation scheme
at a request q is the set of processors that have the latest version of the object in the local database right
before g is executed, but after the immediately-preceding request is executed. The allocation scheme at the
first request is the initial allocation scheme. For example, consider the allocation schedule ¢y above, and the
initial allocation scheme {3,4}. The allocation scheme at the first request w? is {3, 4}; the allocation scheme
at the second, third, and fourth requests is {2, 3}; the allocation scheme at the fifth request is {1,2,3}. We

define a data processor at a request to be a processor which belongs to the allocation scheme at the request,

4Generally, a read request does not necessarily access a single copy of the object. For example, in quorum consensus (see
[17, 30]), a read request retrieves a number of copies that have a read-quorum (and then discards all of them, except the one

with the most recent time-stamp).

and a non-data processor at a request to be a processor which is not a data processor at the request.

In the introduction we mentioned the ¢-availability constraint. Formally, for an integer ¢, an allocation
schedule satisfies the t-availability constraint if the allocation scheme at every request is of size which is at
least ¢. For simplicity we shall assume that ¢ is at least 2. We shall also assume that ¢ is smaller than the
total number of processors in the network, otherwise each write must be propagated to all the processors of
the network, and the problems addressed in this paper become trivial.

Next we define a legal allocation schedule. Intuitively, it is an allocation schedule in which the execution
set of every read request contains at least one data processor. In other words, the read request accesses
the object in some processor that has a latest version of the object in its local database. Formally, given
an initial allocation scheme, a legal allocation schedule is an allocation schedule in which the execution set
of every read request has a non-empty intersection with the allocation scheme at the read request. For
example, the allocation schedule ¢y above is legal. However, ¢y will be illegal if we change the execution set
of the last request 72 from {2} to {4}.

A legal allocation schedule ¢ and a schedule ¥ correspond to each other if 1) is obtained from ¢ by
eliminating the execution sets, and turning every saving-read to a read. For example, ¢y and 1y correspond

to each other.

3.2 The Cost of Requests in Stationary-Computing

We define the cost of inputting/outputting the object to the local database at a processor to be one unit.
We denote by ¢4 the cost of transmitting a data-message from one processor to another, and we denote by
¢. the cost of transmitting a control-message from one processor to another. Observe that this definition
assumes a homogeneous system, in which the data-message between every pair of processors costs ¢y, the
control-message between every pair of processors costs c., and the I/O cost is identical at all the processors.

Given an allocation schedule, the cost of a request ¢, denoted COST(q), is defined as follows. Suppose
that ¢ = 7%, i.e., ¢ is a non-saving-read from processor i, and suppose that X is its execution set. In other
words, the read request retrieves the object from the local database at the processors in X. If 7 € X, then
COST(r*) = (|X| —1) - cc + | X| + (|X]| = 1) - cq. Intuitively, (|X| — 1) - c. is the cost of submitting a read
request to (|X| — 1) processors, |X| is the I/O cost of inputing the object from the local database at |X|
processors, and (|X| — 1) - ¢4 is the communication cost of sending the object from (|X| — 1) processors to
i. Otherwise, i.e., if i € X, then COST(r*) = | X| - (cc + 1 + ¢g).

Suppose that g = r¢, i.e., ¢ is a saving-read from processor i, and suppose that X is its execution set.

Then,
. X|—1D-ce+|X|+(X|—1)-cg+1 ifieX,
COST() = (X =1) e+ [X[+ (IX] 1)

| X|-(cc+14cq)+1 otherwise
The cost of a saving-read is higher (by 1) than that of a non-saving read, to account for the extra I/O cost
to save the object in the local database at .

Suppose that ¢ = w’, i.e., ¢ is a write request from processor %, suppose that X is its execution set, and

suppose that Y is the allocation scheme at w®. Then,

COST(uf) = Y/X|-cc+ (| X|—1)-cg+|X| ifieX,
|Y/X/{i}| - cc+ |X]| - (ca+ 1) otherwise

The explanation for the write cost is as follows. As part of servicing the write request that creates a
new allocation scheme of the object, an ’invalidate’ control message has to be sent to all the processors of
Y/X, i.e. the processors at which the copy of the object is obsolete’; these are the processors of Y (the old
allocation scheme) that are not in X (the new allocation scheme). Thus, the first term in the write-cost.
The other terms are the cost of communicating the object to the processors of the new allocation scheme,
and the cost of outputting the object to the local database at these processors.

For an allocation schedule ¢ = 01X ... 0,X, and an initial allocation scheme I, where o; is either a read
or a saving-read or a write, X; is the execution set of o0;, we define the cost of the allocation schedule &,
denoted by COST(I,£), to be the sum of all costs of the read-write requests in the schedule, i.e.,

n
COST(I,¢) = ZCOST(OZ')
i=1

3.3 The Cost of Requests in Mobile-Computing

Assume that the cost of inputting/outputting the object to/from the local database is zero. We still
assume that the data message cost is ¢4, and the control message cost is c..
Given an allocation schedule, suppose that o is a request in the schedule, Y is the allocation scheme at

o', and X is its execution set. The cost of request o, denoted by COST(0'), is defined as follows.

(

(| X|—1) - (cc + cq) ifoisaread, and i € X

‘ X|-(cc+c ifoisaread, and i € X
COST(OZ):< | | (c d)
Y/X|-cc+(|X|—1)-¢cq ifoisa write, and i € X

Y/ X/H{e} - ee + X - ca if 0 is a write, and 1 ¢ X

5X/Y denotes set-difference, to distinguish from arithmetic difference. Thus X/Y is the set of processors in X but not Y.

The reasoning for this cost function is identical to the one in the previous subsection. Observe that the
cost of a read request executed only locally is zero. Observe also that the cost of a saving-read does not

differ from that of a non-saving read.

3.4 Distributed Object Management Algorithms

A distributed object management (DOM) algorithm (say A) is an algorithm which, given a schedule 9 and
an initial allocation scheme, produces a corresponding legal allocation schedule. We call this legal allocation
schedule the A-allocated schedule of 1) and denote it by las4(1). For an integer ¢ > 1, a DOM algorithm is
t-available constrained if every legal allocation schedule that it produces satisfies the t-available constraint.

We define the cost of the algorithm A on the schedule 1) with initial allocation scheme I to be the cost
of the A-allocated schedule, i.e., COST(I,las(%)), and sometime we denote it by® COSTA(I,9). A t-
available constrained DOM algorithm is cost-optimal if, for every schedule and for every initial allocation
scheme, the cost of the legal allocation schedule that it produces is minimum among all the corresponding
legal allocation schedules that satisfy the t-available constraint.

Now we define a special type of DOM algorithm, called an on-line DOM algorithm. An online DOM
algorithm consists of a sequence of online steps. An online step takes as input an initial allocation scheme
I, a legal allocation schedule ¢, and a request g; it produces a new legal allocation schedule 7 that consists
of the prefix ¢ followed by ¢ (that could be underlined) with an execution set associated with ¢. Intuitively,
an online step appends q to ¢, associates an execution set with ¢, and, if ¢ is a read, possibly turns it into
a saving-read.

An online DOM algorithm is one that produces the legal allocation schedule (las) by ”feeding” the
requests of the schedule, sequentially, into an online step. Specifically, it provides the online step with the
initial allocation scheme, the las produced in the previous invocation of the online step, and the next request
in the sequence. For example, given an initial allocation scheme I, the SA online algorithm produces a legal
allocation schedule by feeding the requests of a schedule into the following online step, that we call Static
Allocation Online Step (SAOS). SAOS ignores the input legal allocation schedule, it associates with every
write the execution set I, and it associates with every read a singleton that is some member in I. Intuitively,

every read request accesses the object at some processor of I, and every write request is propagated to all

SNotice that if 7 is a sub-schedule of the schedule 1, &; is a sub-schedule of £ and &, corresponds to 1), and the allocation
scheme at the first request of £ is I, then the A-allocated schedule with the initial allocation scheme Is, lasa(€s), may not be

&s. Hence COST (I, &) may not equal to COSTa(Is,1)s).

10

processors of 1.
An offline DOM algorithm is one that is not online, namely, it can consider future requests when

determining the execution set of the current one.

4. Comparison of On-Line Algorithms

In this section we define competitiveness as a performance measure for online DOM algorithms, then we
present the static and dynamic on-line DOM algorithms, and then we analyze them in terms of competi-
tiveness. The SA and DA algorithms defined in the introduction are t-available constrained, where ¢ is the
size of the initial allocation scheme. In other words, the SA and DA algorithms defined in the introduction

become t-available constrained DOM’s by providing them with an initial allocation scheme of size ¢.

4.1 Competitiveness

Competitiveness is a widely accepted way to measure the performance of an on-line algorithm (see
[4, 10, 24]). Intuitively, an a-competitive online DOM algorithm is one which, for any schedule, costs at
most « times as much as the minimum cost. Formally, a t-available constrained DOM algorithm, A, is
a-competitive if there are two constants # and «, such that: for an arbitrary initial allocation scheme I
and an arbitrary schedule ¢, COST4(I,v) < a- COSTopr(I,v) + 3, where OPT is an offline t-available
constrained DOM algorithm that produces the minimum cost legal allocation schedule for any input. We

call a the competitiveness factor of the algorithm A.

4.2 Static and Dynamic Allocation In stationary Computing
4.2.1 The Static Allocation Algorithm
The SA algorithm was presented in the introduction. In terms of our model, SA maps a schedule into

the following legal allocation schedule. Suppose that the initial allocation scheme is @ (of size t).

SA Algorithm

1. For a read request ¢, if i € @, then SA associates with it the execution set {i}. Otherwise,

ie., ifi ¢ Q, SA associates’ with it the execution set that consists of an arbitrary processor
in .

2. SA associates with every write the execution set Q.

"Remember that SA maps a schedule into a legal allocation schedule, i.e. by definition, it associates an execution set with

each request.

11

Theorem 1: For any integer ¢, the SA algorithm is (1 4 ¢, + ¢4)-competitive.

Proof : For any input schedule v, we split it into several sub-schedules. For each one of these sub-schedules,
we will show that the incurred cost of SA is at most (1 + ¢, + ¢4) times as much as the incurred cost of
OPT. Thus we conclude the theorem.

Suppose that the schedule b = g1 ... 1, where 1y is zero or more reads which comes before the first
write, and 1); is a write followed by zero or more reads for 1 <7 < k.

First, let’s consider 1y. Suppose that 1y = r/ir?2...rim. Each read costs at least one for the I/O,
hence COSTopr(Q, 1) > m. On the other hand, a read in the SA-allocated schedule won’t cost more than
(1 + cc + ¢q) since SA turns no read into a saving-read. Therefore COSTs4(Q,%0) < (1 +c.+¢q) -m <
(14 c.+cq) - COSTopr(Q,1h0)-

Next we consider the subschedule ;. Suppose that 1; = wfritri2 rim For the OPT algorithm,
suppose that @; is the allocation scheme at the i** write of the OPT-allocated schedule. The write costs
at least (¢t — 1) - ¢4 for communication and ¢ for I/O, and the reads cost at least m for I/O’s. Hence
COSTopr(Qi, ;) > (t—1)-cg+t+m > t+m. For the SA algorithm, the write in the S A-allocated schedule
costs at most ¢ - (1+ ¢4) since the allocation scheme never changes, and each read costs at most (1+ ¢, + ¢g),
therefore COSTs4(Q,¥i) < t-(1+cg)+m-(1+ce+eg) < (t+m)-(14+cc+eg) < (14cc+eq)-COSTopr(Qis ¥i)-

a

The competitiveness factor of SA is tight in the following sense. For any constants v (< 1+ ¢, + ¢4), and
B > 0, we can construct a schedule v, such that COSTs4(Q,%) > v- COSTopr(Q,) + 5. Thus, we have

the following.

Proposition 1: For any constant v and for any integer ¢, if v < 1 4 ¢, + ¢4, then the algorithm SA is not

y-competitive.

Proof : By way of contradiction, we suppose that there exist v < 1 + ¢, + ¢4 and 8 > 0, such that
COSTs4(Q,) <~v-COSTopr(Q,1) + B for any schedule).
Consider the schedule v; that consists of m reads from j, j € (), where m is big enough so that

m > Lt tB - Clearly, COSTopr(Q,v1) <1+ ¢+ ca+m, and COSTs4(Q, 1) = (1 + ¢ + cq) - m.

Then

v-COSTopr(Q; 1) +B<y-(1+cc+cg+m)+B=7-(1+cc+ca) +B+7-m

<(I+4+cct+ecg—7y) m+y-m=14c.+cqg)-m=COSTs4(Q,%1)

12

But this contradicts the hypothesis. O

4.2.2. The Dynamic Allocation Algorithm

Here we describe the DA algorithm presented in the introduction in terms of our model. DA selects a
set of processors F' of size (t — 1) and a processor p ¢ F, such that F' U {p} is the initial allocation scheme.

DA maps a schedule to an legal allocation schedule in the online steps as follows.

DA Algorithm

1. For a read request 7, if i is a data processor, then DA associates with it the execution set
{i}. Otherwise, i.e., if 7 is a non-data processor, then DA associates with it the execution

set that consists of a processor in F, and DA turns this read into a saving read r’.

2. For a write request w’, if j € F U {p}, then DA associates with it the execution set F U {p}.

Otherwise, i.e., if j &€ F' U {p}, then DA associates with it the execution set F U {j}.

Theorem 2: For any integer ¢, the DA algorithm is (2 + 2 - ¢.)-competitive®.

This theorem gives an upper bound of the competitiveness factor of DA, namely the bound (2 + 2 - ¢,)
may not be tight. We say so because we did not find a schedule for which the cost of DA is exactly (2+2-c,)
X (the optimal cost) and we did not find a constant « (o < 2 +2-¢.) so that DA is a-competitive. Though
we did not lower the competitiveness factor in general, we obtained that this factor can be lowered by ¢,

under the condition ¢4 > 1, i.e., the following.
Theorem 3: For any integer ¢, if ¢; > 1, then the DA algorithm is (2 + c.)-competitive®.
Next, we obtain a lower bound of 1.5 for the competitiveness factor of DA, namely:
Proposition 2: For any constant 7 and for any integer ¢, if v < 1.5, then the algorithm DA is not -

competitive.
Proof: By way of contradiction, we suppose that there exists a constant v < 1.5 and a constant § > 0, such
that COSTpa(I,¢) <~v-COSTopr(I,¢) + B for any schedule 1.

The initial allocation scheme is I = F' U {p} of size ¢t. Let T be a set of processors of size t, such that

T NI =0. Suppose that ¢ is a processor, such that ¢ € I UT. We denote by '’ the schedule that consists

of t read requests issued from ¢ different processors of 7. Now consider the schedule ¥; = rTwrTwP, and

8The full proof of this theorem is given in the Appendix.

13

let 19 be a schedule that is the concatenation of m subschedules ;. Then,
COSTpa(T,) = [(cc+2+ca) -t +ce- (t+1)+(1+cqg)-1]-2-m

=2-m-[3-t+2-cqg-t+c.-(2-t+1)]

where (c. + 2 + ¢4) - t is the cost of ¢ read requests from 7', and ¢, - (¢ + 1) is the control message cost for
invalidating the ¢ + 1 copies (in T'U {p} or T'U{q}) for the write (from ¢ or p), and (1 + ¢4) - ¢ is the cost of
writing to F U {q} or to F' U {p} (depending on which is the writing processor).

Consider the algorithm B which does not have any saving-read and propagates every write to T. Then
COSTp(I,92) = (cc+1+4cq) - t+ce-t+(1+cg)-t+[t+(1+cq)-t]-(2-m—1). The OPT algorithm

should cost at most as much as B costs for schedule 2. Thus
COSTopr(I,v2) <(cc+1+cqg)-t+ce-t+(1+cg)-t+t+1+4cq)-t]-(2-m—1)

=2-t-cc—t+(14+cg)-t+2-m-(2-t+1t-cy)

3-t-ce+B+1.5-(1+cq)-t
ey . Then,

Choose m to be big enough so that m >
v - COSTopr(I,42) + B — COSTpa(l,1p2) < 1.5- COSTopr(L,12) + B — COSTpa(, 1)

<3:t-ce—15-t+2-m-3-t+15-t-¢cy)+15-(1+cg) t+B—-2-m-(3-t1+2-1-cq)
<3-t-ce+fP+15-(1+cy) - t—m-t-cg<0

This contradicts the hypothesis. O

4.3 Static and Dynamic Allocation in Mobile Computing

Remember that in mobile computing with wireless communication the cost of servicing requests is dom-
inated by the communication cost, i.e. the I/O cost is zero. We will first show that the static allocation
algorithm, SA, is not competitive. Then we show that the dynamic allocation algorithm, DA, remains

competitive.

Proposition 3: The SA algorithm is not competitive.

Proof: By way of contradiction, we suppose that there exist two constants v > 1 and 8 > 0, such that
COSTs4(Q, 1) < 7+ COSTopr(Q,4) + B for any schedule 3.

Consider the schedule 1, that consists of m reads from j, where 7 € @, and m is big enough so that m >

v+ —£—. Clearly, COSTopr(Q, 1) < COSTpA(Q, 1) = cc + cq. On the other hand, COSTs4(Q, 1) =

Cetcyg

14

m - (cc+ cq) >y (cc + cq) + B, which contradicts the hypothesis. 0

Theorem 4: The DA algorithm is (2 + 3 - %)-competitive.

Proof: To prove this theorem, first we establish a lower bound on the communication cost of the optimal
algorithm for an arbitrary schedule. Second, we establish an upper bound on the communication cost of
the DA algorithm for the same schedule. Finally, we take the quotient of these two bounds to derive the
competitiveness factor of the DA algorithm.

Assume that the initial allocation scheme I = F' U {p} is of size ¢. For an arbitrary given schedule with
k writes, kK > 0, we re-write the schedule as ¥ = g1 ... Yy, where 1y is zero or more read requests which
come before the first write, and ; is the i write wPi followed by zero or more reads which come before
the next write for 1 < ¢ < k. Denote by ag the number of different reading processors of ¥y which are not
in FU{p}. For 1 < i <k, denote by a; the number of different reading processors of 1; which are not
pi- Denote by ¢go1 ... ¢ the OPT-allocated schedule of 1, where ¢; corresponds to ;. Denoted by J; the
allocation scheme at wPi using the OPT algorithm. Obviously from the definition of the COST function,
we conclude that

k
COSTopr(I,v) = COST(I,¢o) + Z COST(J;, ;) (%)
i=1
Denote by I; the allocation scheme at wP using the DA algorithm. Denote by &; the sub-allocation schedule
of the DA-allocated schedule of 1 so that &; corresponds to ;. Then we have
k
COSTpa(I,¢) = COST(I,&) + Y _ COST(I;, &) (%%)
=1
Now we examine each item on the right hand side of the formula (**), and compare each piece with the
corresponding estimated lower bound in (*).

To satisfy all the read requests in 1, the communication cost is at least ag - (c.+¢q), i.e., COST (I, ¢g) >
ag + (cc + ¢q). Observe that COST(I,&) = ao - (cc + ¢q) since every remote read is turned into a saving read
in DA. Hence,

ap - ¢ < COST(I, ¢y) (5 * *)

Now consider the subschedules ; for 4 > 1. The object written by p; has to be transmitted to the a;
reading processors, hence the communication cost is at least a;-cg. On the other hand, due to the t-available

constraint, the object written by p; has to be transmitted to (¢ — 1) other processors at wPi, which involves

15

a communication cost of (¢ — 1) - ¢4. Therefore, we conclude that
COST(Ji, ;) > maz{a;-cq, (t—1)-cq} (1)

Now we consider COST(I;,&;). At the write, the ‘invalidating’ message cost is at most (a;_1 + 1) - ¢, since
the allocation scheme I; contains F' and at most (a;—1 + 1) other processors, where ¢, counts for the writing
processor p;_1 or p, and a;_1 - ¢, counts for the reading processors which join the allocation scheme after a
read. The object transmission cost at the write is (t — 1) - ¢4. All the reads in &; cost at most a; - (cc + ¢q4)-
Therefore we have

COST(1;;&) < (ai-1 +1) -cc+ (t = 1) - cqg +ai- (cc + ca)
<() (@i-1 +1) - cc + COST(Ji, ¢5) + COST(Jiy i) - (=5 +1)
d

Thus, we obtain that for : =1,...,k,

COST(I;,&;) < (a; 1 + 1) - cc + COST(Ji, i) - (2 + —d) 2)

By summing (2) up from 1 to k, we obtain

k k k
3" COST(I,&) < ;(ai_l +1)-co+ > COST(Jiy i) - (2 + %)

i=1 i=1 d

k k
Sao-co+ Y (a+1) - cc+ Y COST(Ji,6) - (2+ =)
i=1 i=1 d

Since t > 2, we derive (a; + 1) -c. < a;-cc+ (t—1) - cc <1y COST(J;, i) - f 4 COST(J;, ¢5) - e =
2. g—; -COST(J;, ;). Therefore,

k k
> COST(I;&) < ag-ce+ (243-75)- 3 COST(Tind) (3)
i=1 d =1
We derive,
k
COSTpa(I,) =(u) COST(I,&) + > COST(I;, &)
=1

k
C
<@) COST(I,¢0) +ap-cc+(2+3- c—:) Y COST(J;,)

i=1
. k
oy (243 C_:) - (COST(I, o) + > COST(J;, ¢3))
=1
=@ (2+3- 2) -COSTopr(1,v) =
Cd

Observe that since ¢, < ¢g4, the competitiveness factor of DA is at most 5.

16

5. Practical Issues and Extensions

In this section we concentrate on practical aspects of the DA algorithm (the implementation of static
allocation has been studied extensively in the literature see [2, 3, 7, 27, 29, 30]). Particularly, we discuss the
following issues. First, how the DA algorithm copes with failures. Second, the possibility that the read-write

unit is different than the allocation unit. Third, extensions beyond the read-write model.

5.1 Failures and Recovery

In this subsection we consider transaction aborts and site failures. Transaction aborts are easy in the
following sense. Assuming that an atomic commitment protocol is used for transactions in a distributed
system, all the changes made by an aborting transaction, in particular the changes to the allocation scheme,
are backed out.

Next we discuss site failures. At this stage of our research, we propose that dynamic allocation is used
only during the normal mode of operation, i.e., when there are no site failures in the system. Thus our
analysis holds for this case. When a site failure in F' is detected, the system reverts to quorum consensus
(see [17, 30]). The transition occurs using the missing writes algorithm (see [9, 3]). When a processor in F'
recovers from failure, the recovering procedure will bring the replicas in F' up-to-date. Upon recovery of all
processors in F', the system will resume to DA.

Now we elaborate upon the handling of failures. Suppose that the failures are clean (see [15]), i.e. they
can be detected and a failed processor is totally down. A processor failure may occur at a data processor (a
processor that has a replica of the object) or a non-data processor. The failure of a non data processor does
not affect the execution of read-write requests at the other processors. These failures can be simply ignored.

In DA each processor g (¢ ¢ F) has a unique ”server”, namely a processor of F that receives the
read/write request of ¢ and invalidates the copy at g. Suppose that a data processor d fails, and d ¢ F.
Denote its server by s;. Then, d must be in the ”join-list” of s43. When the failure of d is detected, sq will
remove d from its ”join-list”, and continue. Upon recovery, processor d will consider itself as a non-data
processor.

Suppose now that a processor s in F fails. When a processor ¢ that attempts to read from s detects the
failure of s, it simply re-directs the read to another processor of . When a writing transaction detects a
‘missing write’ to s, then the system resorts to the ‘Quorum Consensus’ protocol with the static allocation
scheme that consists of the processors in F'. Upon recovery of s, it tries to x-lock all replicas in F. If

unsuccessful, namely some other processor in F' is still down, then s will read from a majority of F' and

17

bring its own copy up-to-date. Otherwise, i.e., if all processors in F' are ‘up’, then DA is resumed as follows.
s informs all processors of F' that there is no missing write. A non-server processor that attempts to read
from a quorum is informed that there is no missing write, and is instructed to direct its request to its own
server.

Further details of failure handling and proof of correctness are beyond the scope of this paper.

5.2 Discrepency between the read-write unit and the allocation/replication unit

The model discussed in this paper assumes that the read-write unit is identical to the replication unit. In
other words, an object was both, the unit being allocated and replicated, as well as the unit being read and
written. This is often the case when data is replicated in logical units (e.g. a text file) but not when data is
allocated in physical units. For example, suppose that the replication unit is a block, i.e., data is replicated
in full blocks. Furthermore, suppose that as a result of a read-write request, the unit transferred between
two processors is a set of tuples out of a block. Then, as a result of servicing a read-write request, only
a fraction of the replication unit is being transferred. Our model can be adapted to handle this situation
by representing a schedule as a sequence of requests, as before, except that with each one we associate a
fraction; it is the fraction of the physical object that is being requested. Obviously, we can obtain a lower
bound for this extended-model as well.

The dynamic allocation DOM can be adapted for this case by, for example, imposing the following rule.
The object o is replicated at processor p, when the total size of transfers to p (as a result of reads issued
by p) exceeds the size of the last write of 0. We conjecture that the DA algorithm modified in this fashion

remains competitive.

5.3 Method invocation in object oriented environments

We can also extend our model beyond reads and writes. In object-oriented systems processors do not
issue read write requests, but invoke methods. However, a method invocations also either results in the
modification of the object, or it results in some information from the object being processed and the result
transmitted. When a method that modifies an object is being invoked, the invocation can be modeled
as a write request with two parameters. One is the amount of data the caller-processor transmits to the
callee-processor as parameters for the method, and the other is the amount of data that the callee has to
output to secondary storage to modify the object. Therefore, in an object-oriented system a schedule is a

sequence of requests, each of which has two associated parameters: the I/O cost of servicing the request,

18

and the communication cost of servicing the request. A lower bound can also be obtained for this model,

and dynamic allocation algorithms can be devised, but this is the subject of future research.

6. Comparison with Relevant Literature

One research area that is relevant to our dynamic allocation approach is caching in various contexts, e.g.

networking and the World-Wide Web (see for example [21, 26, 13, 14, 6, 5, 16]), Client/Server databases
(e.g. [34, 11]), distributed file systems (e.g. [23, 20, 28, 12]), and distributed shared memory(e.g. [22, 25]).
However, our approach has several important aspects whose combination is unique. First, we study dynamic
allocation as an independent concept, unrestricted by the limitations of a particular system, protocol, or
application. In existing studies, a particular environment often restricts the allocation options. Second, we
consider caching in a peer-to-peer rather than client-server environment. Third, we consider the dollar cost
in addition to performance. Fourth, we perform a formal worst-case analysis. As far as we know, these
aspects have not been studied in combination in any of the existing works.

In [32, 19, 18] we considered the cost and time of dynamic allocation. However, the model there ignores
the I/O cost and availability constraints (i.e., they consider only communication). Also, the model in
[32] is dependent on the communication network having a tree topology. The present paper removes this
dependency.

Additionally, the algorithms developed in [32] are convergent rather than competitive. This means the
following. Assume that the pattern of access to each object is generally regular. For example, during the
first two hours processor = executes three reads and one write per second, processor y executes five reads and
two writes per second, etc.; during the next four hour period processor = executes one read and one write
per second, processor y executes two reads and two writes, and so on. Then, a convergent algorithm will
move to the optimal allocation scheme for the global read-write pattern during the first two hours, then it
will converge to the optimal allocation scheme for the global read-write pattern during the next four hours,
etc.

Competitiveness and convergence are two criteria for evaluating online algorithms. A competitive al-
gorithm may not converge to the optimal allocation scheme when the read-write pattern stabilizes, and a
convergent algorithm may unboundedly diverge from the optimum when the read-write pattern is irregu-
lar. A competitive online algorithm is more appropriate for chaotic read-write patterns, in which the past

access pattern does not provide any indication to the future read-write pattern. In contrast, a convergent

19

online algorithm is more appropriate for regular read-write patterns (although it is not guaranteed that a
convergent algorithm will always outperform a competitive one, even for regular read-write patterns).

In [33] we developed a different algorithm that is also convergent rather than competitive. In [19] we
developed a competitive algorithm, called CDDR, for a model that ignores the I/O cost and the availability
constraints. The DA algorithm presented here is totally different than CDDR. Furthermore, the CDDR
algorithm is not competitive when the I/O cost and the availability constraints are taken into consideration.

There has also been work addressing dynamic object allocation algorithms in [1]. However, the model
there does not allow concurrent requests, and it requires centralized decision making by a processor that is
aware of all the requests in the network. In contrast, our algorithms are distributed, and allow concurrent
read-write requests. Additionally, the model in [1] also concentrates exclusively on communication, and it
does not consider I/O cost and availability constraints.

The two main purposes of replicated data are increased availability and performance. No other work of
which we are aware, quantitatively compares static and dynamic allocation, while considering both purposes
of data replication and treating I/O and communication costs in a unified model.

Static allocation was studied in [31, 8], however not from an online-algorithmic point of view. In other
words, these works address the following file-allocation problem. They assume that the read-write pattern
at each processor is known a priori and they find the optimal static allocation scheme. However, works on
file-allocation problem do not quantify the cost penalty if the read-write pattern is not known. In contrast,

in this paper we do so.

7. Conclusion

In this paper we addressed the problem of automatic allocation and replication of a single object in a
distributed system. Particularly, we considered distributed-object-management (DOM) algorithms. Such
an algorithm services read-write requests by mapping the request to a set of processors that will execute
it. Additionally, the algorithm determines the allocation scheme of the object, namely the set of processors
that store the object in their local database. The allocation scheme may change over time, as read-write
requests are processed.

We introduced a model for analyzing the communication cost of distributed object management algo-
rithms, and a model for analyzing both the communication cost and the I/O cost of such algorithms in
an integrated fashion. We discussed distributed-object-management algorithms on two dimensions. First,

the knowledge level of the algorithm. Offline algorithms have a priori knowledge of all read-write requests,

20

whereas online algorithms do not do so; they have to service a request and determine the allocation scheme
without knowing the future requests. Offline algorithms were used as a yardstick to evaluate the performance
of online algorithms. The second dimension is variation of the allocation scheme. A static algorithm does
not vary the allocation scheme while processing reads and writes, whereas a dynamic algorithm does so.

We also introduced the dynamic allocation (DA) algorithm. In DA, whenever a processor reads a copy
of the object, it saves the copy in its local database. Then we compared the DA algorithm with the
traditional, read-one-write-all, static allocation (SA) algorithm. We showed that in the model where both
communication and I/O costs are considered, the SA algorithm is tightly (1+c.+c4)-competitive, the DA
algorithm is (242 - ¢.)-competitive, and when ¢4 > 1 the DA algorithm is (2+c.)-competitive; c. is the
ratio of the cost of transmitting a control message to the cost of inputting/outputting the object to the
local database on secondary storage, and ¢4 is the ratio of the cost of transmitting the object between two
processors to the I/O cost. A DOM algorithm is a-competitive if the ratio of the cost of the algorithm to
the optimal cost is at most «, for an arbitrary sequence of read-write requests. Also, we showed that in the
model where only communication cost matters (e.g. mobile computing), the SA algorithm is not competitive
while the DA algorithm remains competitive. Hence in this model the DA algorithm is strictly superior to
the SA algorithm as demonstrated in figure 2 of the introduction.

A point that we would like to emphasize here is that the DA algorithm is not simply the SA algorithm,
modified to save in the local database every object that is read remotely. Rather, in DA, the set of ¢ processors
to which a write is propagated changes (although the set always contains F' as a subset) depending on the
writing processor. We also considered another algorithm, called Expanding-Allocation(EA) (EA is not
discussed in the paper). In EA, every write is propagated to a fixed set of ¢ processors (as in SA), and every
remote read saves a copy of the object in the local database (as in DA). In EA, the competitiveness factor
is higher than in DA.

In the stationary computing model, where both communication and I/O costs are considered, the results
of the comparison between the DA and SA algorithms are that SA is superior when ¢, + ¢4 < 0.5, and DA
is superior when ¢4 > 1. These results are summarized in figure 1 of the introduction. The intuition for
these comparison results is as follows. At some level of abstraction, the DA algorithm is similar to the SA
algorithm, except that in DA a processor that reads the object from another one joins the allocation scheme,
whereas in SA it does not do so. By joining the allocation scheme a processor incurs the following tradeoff.

The current read becomes more expensive by 1, namely the I/O cost, and future reads that occur before

21

the next write are less expensive by ¢, + ¢4, namely the communication cost of requesting and receiving an
object. Therefore SA is superior when the communication costs are small compared to the I/O cost, and DA
is superior when the opposite occurs. So why isn’t it the case that simply SA is superior when ¢, + ¢4 < 1,
and DA is superior when ¢, + ¢4 > 17 The answer to this question is that our objective function is global
as opposed to local, and in the global sense the cost of saving a copy of the object in the local database is
not only the I/O cost. Each subsequent write will also have to be propagated to a processor that joins the
allocation scheme, and this costs communication. So, a processor p that keeps a copy of the object not only
pays the I/O cost of saving the object in the local database, but will also have to pay the price of having
updates of the object propagated to p.

The area of Figure 1 that is marked ” Unknown” represents the ¢, and ¢, values for which it is currently
unknown whether the DA algorithm is superior to the SA algorithm or vice versa. The reason for this
uncertainty is that there is a gap between the upper and lower bound on the competitiveness of the DA

algorithm. This gap is the subject of future research.

References

[1] Y. Bartal, A. Fiat, Y. Rabani, ”Competitive Algorithms for Distributed Data Management”, 24th
Annual ACM STOC, 5/92, Victoria, B.C. Canada.

[2] P.A. Bernstein, and N. Goodman, ”An algorithm for concurrency control and recovery in replicated

distributed databases”, ACM-TODS, Vol. 9, No. 4, December 1984, Pages 596-615

[3] P.Bernstein, V. Hadzilacos, and N. Goodman, ” Concurrency control and recovery in database systems”,

Addison-Wesley (1987)

[4] David L. Black and Daniel D. Sleator, ”Competitive Algorithms for Replication and Migration Prob-
lems”, Technical Report, CMU-CS-89-201, November 1989

[5] M. E. Crovella, R. L. Carter, ”Dynamic Server Selection in the Internet”, Proc. of the 3rd Workshop

on the Architecture and Implementation of High Performance Communication Subsystems, 95.

[6] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz,, K. J. Worrell, ” A Hierarchical Internet
Object Cache”, Proc. of USENIX, 1996.

22

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Michael J. Carey, and Miron Livny, ”Distributed concurrency control performance: A study of algo-

rithms, distribution and replication”, Proc. of the 14th VLDB Conf., Los Angeles, CA, 1988

L. W. Dowdy and D. V. Foster, ” Comparative Models of the File Assignment Problem’, ACM Computing
Surveys, 14 (2), 1982.

Eager, D.L. and K.C. Sevick, ” Achieving Robustness in Distributed Database Systems”, ACM Trans.
on Database Systems, 8(3), 354-381, Sept. 1983

A. Fiat, R, Karp, M.Luby, L.A. McGeoch, D.Sleator, N.E. Yong, ”Competitive paging algorithms”,
Journal of Algorithms, 12, pages 685-699, 1991

M.J. Franklin, ”Client Data Caching”, Kluwer Academic Publishers, 1996.

C. Gray, D. Cheriton, "Leases: An Efficient Fault-Tolerant Mechanism for Distributed File Cache

Consistency”, Proceedings of the 12th International Symposium on Operating System Principles, 1989.

J. Gwertzman, M. Seltzer, ”World-Wide Web Cache Consistency”, Proceedings of the 1996 Usenix

Conference, January 1996.

J. Gwertzman, M. Seltzer, " The Case for Geographical Push Caching”, Workshop on Hot Operating
Systems, 1995.

N. Goodman, D. Skeen, A. Chan, U.Dayal, S. Fox, D. Ries, ”A recovery algorithm for a distributed
database system”, Proc. 2nd ACM SIGACT-SIGMOD, Symp. Database System, Atlanta, GA, March
1983, pp 8-15

J. D. Guyton, M. F. Schwartz, ” Locating Nearby Copies of Replicated Internet Servers”, TR CU-CS-

762-95 Department of Computer Science, Univ. of Colorado, Boulder, February 1995.

D. Gifford. ” Weighted Voting for Replicated Data”, Proc. of 7th ACM Symposium on Operation System

Principles, pages 150-162, 1979

Yixiu Huang, Prasad Sistla and Ouri Wolfson, "Data Replication for Mobile Computers”, ACM-
SIGMOD International Conference on Management of Data, May 1994, Minneapolis, MN.

Yixiu Huang, Ouri Wolfson, ” A Competitive Dynamic Data Replication Algorithm”, IEEE Proc. of 9th

Int’l Conf. on Data Engineering ’93, pp. 310-317, Vienna, Austria

23

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

J. Kistler, M. Satyanarayanan, ”Disconnected Operation inn the Coda File System”, Proceedings of the

18th International Symposium on Operating System Principles, Pacific Grove, CA, Oct. 1991.

C. Liu, P. Cao, "Maintaining Strong Cache Consistency in the World-Wide Web”, Proc. of the Inter-

national Conference on Distributed Computing Systems, 97.

K. Li, P. Hudak, "Memory Coherence in Shared Virtual Memory Systems”, ACM Transactions on
Computer Surveys, Vol 7, No. 4, Nov. 1989.

E. Levy, A. Silbershatz, ” Distributed File Systems: Concepts and Examples”, ACM Computing Surveys,
Vol. 22, No. 4, Dec. 1990.

M. Manasse, L.A. McGeoch, and D.Sleator, ” Competitive algorithms for online problems”, Proc. 20th
ACM STOC, page 322-333, ACM 1988

B. Nitzberg, V. Lo, ”Distributed Shared Memory: A Survey of Issues and Algorithms”, IEEE Computer,
Vol. 24, No. 8, August 1991.

K. Obraczka, P. Danzig, D. DeLucia, E-Y. Tsai, ”A Tool Massively Replicating Internet Archives:
Design, Implementation, and Experience”, Proc. of the International Conf. on Distributed Computing

Systems, 1996.
T. M. Ozsu, P. Valduriez, ”"Principles of Distributed Database Systems”, Prentice Hall

G. Popek, R. Guy, T. Page, J. Heidemann, ”Replication in Ficus Distributed File Systems”, Proceedings
of the Workshop on Management of Replicated Data, IEEE, Houston, Nov. 1990.

C. Papadimitriou, ” The serializability of concurrent updates”, Journal of the ACM, 26(4), pp. 631-653

R. H. Thomas, ” A Majority Consensus Approach to Concurrency Control for Multiple Copy Database”,
ACM Trans. on Database Systems, 4(2):180-209, June, 1979

O. Wolfson and A. Milo, ”The Multicast Policy and Its Relationship to Replicated Data Placement”,
ACM TODS, 16 (1), 1991.

Ouri Wolfson and Sushil Jajodia, ”Distributed Algorithms for Dynamic Replication of Data”, Proc. of
ACM-PODS, 1992

24

[33] Ouri Wolfson and Sushil Jajodia, "An Algorithm for Dynamic Data Distribution”, Proc. of the 2nd
Workshop on Management of Replicated Data (WMRD-II), 1992, pp. 62-65

[34] M. Zahariousdakis, M. J. Carey, ”Hierarchical, Adaptive Cache Consistency in a Page Server

OODBMS”, Proc. of the International Conference on Distributed Computing Systems, 97.

APPENDIX : Competitiveness Proof of the DA Algorithm

In this appendix, we prove theorem 2 and theorem 3.
A.1 Outline of the Proof

Given an initial allocation scheme I = F U {p} of size t, we will prove that for any schedule 1,
COSTpa(1,¢) < a-COSTopr(I,v). In general, @« = 2+ 2- ¢, and if ¢4 > 1 then @« = 2 4+ ¢.. The
proof proceeds in the following steps.

First, we decompose the objective function COST into two functions, namely, CO and ST'. For any DOM
algorithm A, the first function CO4 (I, 1) denotes the total control message cost for processing the schedule
1 using algorithm A. It is a multiple of ¢, (refer to the definition of COST in section 2.2). The second
function ST4(I,1)) denotes the total other cost of processing the schedule, namely the total cost incurred for
inputting/outputting the object from/to the local databases and the data message cost. Obviously, COST

is the sum of the C'O-cost and the ST-cost, i.e.,

Second, we devise an offline ¢-LB algorithm, and show that for arbitrary schedule the ¢-L B-allocated
schedule reaches the lower bound for the ST function, i.e., STi-p(I,v) < ST4(I,%) for any DOM algorithm
A. Thus,

STi-.e(I,v) < STopr(I,v) < COSTopr(I,) (1.2)

Notice that if we ignore the control message cost, i.e., we assume ¢, = 0, then ¢-L B is the optimum algorithm.
Third, we will show that STpa(I,v¢) < 2- STi-rp(I,v), and COpa(I,¥) < 2-c.- STi-rp(I,). Addi-
tionally, we show that if ¢y > 1 then COps(I,v) < ¢.- STi-1.B(I,). These three steps combined prove the
theorem 2 and 3.
The rest of this appendix is organized as follows. In A.2, we describe the {-LB Algorithm. In A.3, we
prove that ¢-LB-allocated schedule has the lower bound for the ST function. Lastly in A.4, we prove the

theorem 2 and the theorem 3.

25

A.2 The t-LB Algorithm

In this section we present a DOM algorithm called ¢t-LB. t¢-LB is defined for an integer ¢, and it is
t-available constrained. It is designed to minimize the ST-cost of a schedule, while ignoring the CO-cost.

The ¢-LB algorithm maps a schedule 1 to a corresponding legal allocation schedule lasi-1,5(%); it does
so by sequentially examining each request in v, starting with the first one. Intuitively, +-LB computes a
tradeoff function § for each request. Based on §, {-LB determines what execution set to associate with the
request and which read to turn into a saving-read. The function § at a request ¢ depends on requests that
succeed ¢, and therefore ¢-L.B is an off-line algorithm. A read request from a non-data processor i is turned
into a saving read if the extra cost for outputting the object to the local database is paid off by eliminating
the communication cost of future reads from . With a write request, ¢-L.B associates an execution set which,
basically, consists of the ¢ processors which issue the most reads between the current write and the next one.
However, in choosing these ¢ processors the writing processor receives a special treatment, because writing

locally does not involve communication cost.
The t-LB Algorithm

1. For r%, i.e., a read request from processor 1,

(a) If i is a data processor at 7%, then t-LB associates with it the set {i}.

(b) If i is a non-data processor at r!, then ¢-LB associates with it the set that
consists of an arbitrary single processor of the allocation scheme. Additionally,
t-LB computes (i) = n; - ¢g — 1, where n; is the number of reads that i issues
before the next write, but after 7. If (i) > 0, then ¢-LB turns this read into
a saving-read.

2. For w/, i.e., a write request from processor j, t-LB computes 6(j) = nj - cq — 1, and
d(i) = n; - cq — cq — 1 for every other processor ¢ in the network; n; (n;) is the number of
reads that processor j (i) issues between w’/ and the next write-request.

(a) If 6(j) > 0, then t-LB associates with w’ the execution set that consists of j
and (¢t — 1) other processors that have the largest J-values.

(b) Otherwise, i.e., if §(j) < 0, then ¢-LB associates with w’ the set of ¢ processors

that have the largest d-values.

The following example demonstrates the ¢-LB algorithm.

26

Example 1: Suppose that the network consists of four processors {1,2,3,4}, and the initial allocation
scheme is {1,2}. Suppose that the relative communication cost ¢4 = 1.5, and the reliability threshold
t = 2. Consider the request schedule 1; = r3rir3rlrdw?r3r2rirdpdrley3. - 1B associates with the first read
(r3) the execution set {1}. Since processor 3 will issue two more reads before the next write, and since
§(3) =2-1.5—1 > 0, t-LB turns this read into a saving-read. ¢-LB associates with the second read (r*), the
execution set {1}. Because processor 4 issues no more reads before the next write, the copy is not saved in
the local database at processor 4. The third, fourth, and fifth requests are issued from data processors, hence
the execution sets consist of the reading processor alone. For the sixth request (w?), ¢-LB computes the
d-function for every processor. The number of reads issued before the next write (actually there is no next
write) by the various processors are: nqy = no = 1,n3 = 3,n4 = 2. Hence, §(1) = —1,46(2) = 0.5,6(3) = 2,
and 6(4) = 0.5. Therefore, t-LB associates with this write the execution set {2,3}. For the seventh, and
eighth requests (reads from data processors), t-LB associates with each one of them the sets consisting of
the reading processor alone. #-LB associates with the ninth request (r*), the execution set {2}. Because
processor 4 issues one more read afterwards, and §(4) =1-1.5 —1 > 0, t-LB turns this read into a saving-
read. The tenth, eleventh, and thirteenth requests are reads from data processors, thus ¢-I.B associates with
them the sets consisting of the reading processor alone. ¢-LB associates with the twelfth request (r!), the

execution set {2}. Because processor 1 issues no more read afterwards, the copy is not saved at processor 1.

Therefore the t-LB-allocated schedule of v is las;-r.p(¢1) =

{1}, rH {1}, 33, r {1}, 33, w? {2, 3}, r2 {3}, 2 (2}, e {2}, P (3}, r {4}, 12}, {3} D

We define a t-available constrained DOM algorithm B to be ST-optimal if for an arbitrary initial al-
location scheme I and an arbitrary schedule v, the inequality STg(I,) < ST4(I,) holds true for any

t-available constrained DOM algorithm A.

Theorem 5: For any integer ¢, the t-LB algorithm is ST-optimal.

A.3 Proof of the Theorem 5
A.3.1 Proof Outline

First, we study two special types of schedule, namely 1) the schedule which consists of read requests
only; and 2) the schedule which consists of a write followed by zero or more read requests. And we show
that ¢-LB has the minimum ST-cost on these two types of schedules among all ¢-available constrained DOM

algorithms.

27

Second, we investigate the ST-cost of a DOM algorithm on an arbitrary given input schedule ¢. We split
the schedule into several sub-schedules, each one of which falls into one of the two special types of schedule
mentioned above. And we show that the ST-cost of a DOM algorithm on the whole schedule is the sum of
the ST-costs of the DOM algorithm on each one of these sub-schedules.

At last, we use the results to conclude the theorem 5.

The technique that we use for the proof is as follows. To examine the total ST-cost of an allocation
schedule, we re-formulate the ST-cost of each request in terms of the sum of p-costs (processor-cost) at
different processors. Intuitively, the p-cost of a processor ¢ at a request o is defined as follows. If o is a read
issued by ¢, then the p-cost of ¢ is the total ST-cost of the request and the p-cost of other processors are
zeros. If o is a write issued by y, then the p-cost of g is the ST-cost incurred at g. Namely, if ¢ is not in the
execution set of o, then the p-cost at ¢ is zero; If ¢ is in the execution set of 0 and g = y, then the p-cost at
q is 1; Otherwise, i.e., if ¢ is in the execution set of 0 and g # y, then the p-cost at ¢ is 1+ ¢4. The p-cost of
a processor on a schedule is the sum of the p-costs of the processor at all the requests of the schedule. After
defining the p-cost, we analyze the t-LB-allocated schedule and A-allocated schedule of the same arbitrarily
given schedule by comparing their p-cost on the whole schedule at each processor in order to conclude the
theorem.

The rest of section A.3 consists of the following subsections. In A.3.2, we describe the ST-cost re-
formulation in detail and formally define the p-cost. In A.3.3, we show that ¢-LB has the minimum ST-cost
on the first type of schedules. In A.3.4, we show that ¢-LLB has the minimum ST-cost on the second type of
schedules. In A.3.5, we show that the ST-cost of an arbitrary DOM algorithm A on an arbitrary schedule is
the sum of the ST-cost of the algorithm A on several subschedules. Lastly in A.3.6, we prove the theorem

5.
A.3.2 Re-formulating the ST-cost

Given an initial allocation scheme I, and an input schedule 1, for the DOM algorithm A-allocated

schedule las 4 (1) = 0{1 X 10%2X2 ...0lm X, we define the p-cost of processor g at the request 017”‘, denoted by

28

PC4(0l), as follows.

0 if 0171 is a read and q # j;
STa(I, 0,:") if Of’ is a read and g = j;

PCY(0l) =1 0 ifogi is a write and q & X;
1 if o{”‘ is a write, ¢ = j;, and ¢ € X;
| 14 ¢q ifogi is a write, ¢ # j;, and q € X;
;From this definition we see that ST4(I, oi.”") = flvzl PCi(ogi), where N is the number of processors in the

system.

We define the p-cost of processor g on 1) to be the sum of the p-costs of ¢ at all requests in 1, namely,

PCY () = £, PCY(0}). Then

i=1g=1 g=1i=1

m) m N . N m) N
STAULY) =3 STa(T0f) = 3. 3. PO (o) = 3 Y PCY(oF) = 3. PCS(®)
=1 q=1

A.3.3 For Read-Only Schedules — the First Type of Schedules

Lemma 3.1: If I is an arbitrary given initial allocation scheme, and 7 is a schedule that consists of read

requests only, then STy (I, 7) < ST4(I,n) for any t-available constrained DOM algorithm A.

Proof: Suppose m = 791772 .. .1k, Denote by X the set of reading processors in w. Denote by m; the

number of reads from j in 7.
Case i: j ¢ X, PCJ, z(n) = PCY () = 0.
Case ii: j € X NI, PCJ, z(n) = PCY(x) = my;

Case iii: j € X/I, and (mj —1) - ¢4 —1>0. Then in 7, the first time processor j reads, we have n; =

mj — 1 and &; > 0. Hence #-LB turns this first read into a saving-read and PC/, 5(7) = 1+ ¢4 + m;.

a: If A turns j's n'* read in into a saving-read, where 1 < n < m;. Then PC’%(W) =n-(14+c¢q) +
1+mj—n=mj+n-cqg+1>PCL, 5(n).
b: If A does not turn j's read into a saving-read at all, then PC’IJ‘;(W) = (1+c¢q) -mj =mj+cqg-mj >

mj+ci+1= PCg_LB(’/T).

Case iv: j € X/I, and (m; — 1) -cq —1 < 0. In 7 processor j always have J; < 0, hence ¢-LB does not turn

j's read into a saving-read at all, and PCY, p(m) = (1 + cq) - mj. If A turns j's n'™ read in into a

29

saving-read, where 1 < n < mj, then PCﬁ.‘(w) =n-(I14+cg))+14+mj—n=mj+(n—1)-cq+cg+1>

m; +m;-cq = PCg_LB(ﬂ').

Summarizing above cases, we see that for every processor 7, PCg_ Le(m) < PCZl(ﬂ'). Therefore
N N
STy-rp(I,m) Z ClL g Z = STy(I,x) O

A.3.4 For the Second Type of Schedules

Lemma 3.2: If [is an arbitrary given initial allocation scheme, and o is a schedule that consists of a write
followed by zero or more read requests, then STi-1p(I,0) < ST4(I,0) for any t-available constrained DOM
algorithm A.

Proof: Suppose o = w’rt.. .77k, Denote by T the execution set of the write w’° using algorithm ¢-LB.
Then |T| = t. Denote the set of processors which satisfy §(j) > 0 at the write by Y, and y = |Y|. Now
we analyze the case i) y > ¢, and the case ii) y < ¢ respectively. We denote by m; the number of reads of

processor j in 0. Then n; = m; at the write for all j.

Case i: y > t. In this case we investigate the p-cost at jg, the p-cost of a processor in Y, and the p-cost of

a processor not in Y, respectively.

a: jo €Y. Then jo € T and PC, 4(0) = 1+ my,. 6(jo) = ca - mjo —1 > 0.
1. If A turns jo’s n'” read into a saving read, where 0 < n < mj;, n = 0 implies that processor
jo gets a copy when at the write. Then PC%(0) > (14¢q)-n+ 1+mj,—n=mj+n-cq+1>
PCt °,B(0).
2. If A does not output the object to jo’s local database at all, then PC’fj’(a) > (1+c¢q) -mj, =
Mjo + €4 - Mjy > mj, +1 = PCgf’LB(a).
b: jo &Y. Then jo ¢ T, PCtj_OLB(O') = (1 + cq) - mj, and 6(jo) = ¢4 - mj, —1 < 0. If A turns jo’s
n'" read into a saving-read, where 0 < n < m;,. Then PCﬁf(a) >(1+cg) n+l4+mj—n=
mj, +n-cqg+1>mj +n-cqg+cqg-mj; > PC’g_OLB(U).

c: j#joand j €Y. Then 6(j) =cq4- (mj —1) —1 > 0. t-LB either puts a replica at j at the write

or turns j's first read into a saving-read, therefore PCY; 5(0) = 1+ ¢4 + m;.

1. If A turns j’s n'® read into a saving read, where 1 < n < m;, then PCZl(O') >(14cq) -n+

l+mj—n=mj+n-cg+1>PCL, (o)

30

2. If A does not output the object to j’s local database at all, then PCﬁ,(a) =(14c¢q) -m; =
mj +cq-mj = PCLpp(0)

d: jF#joand j €Y. Then 6(j) = ¢4 (mj —1) —1 < 0. ¢-LB does not put a replica at j's local

database, hence PCg_LB(O') = (14 ¢q) - m;.
1. If A puts a replica to j's local database at the write, then PCﬁl(U) = l4cg+m; > cgmj+m; =
p Cg—LB(U)'
2. If A turns j’s n'* read into a saving read, where 1 < n < m;, then PCﬁl(a) =14c¢g) n+

1+mj—n:mj+n-cd+12mj+cd+1ZPCg_LB(U).

In this case we see that for every processor 7, PC,f_ 1plo) < PCZl (o). Therefore we obtain

E;’V:IPCg—LB(U) < Zé'v:1 PC}L‘;(U)

Case ii: y <t. In this case, t-LB turns no read into a saving-read. Denote by X the execution set of wo
using A. Then |X| > ¢. Let R=T/X, and r = |R|. Then there must be r different processors in X /7.
Suppose that R = {i1,...,%,}, and K = {ky,...,k,} C X/T. We will compare the p-cost at processor
j for the following cases. a) j€ X NT;b) j€TUK;c) j € RUK.

a: jeXnT.
PC}(0) > PCL 1 p(0) = !
1+cq+m; otherwise

b: j¢TUK. PCﬁ_LB (0) = (14cq) m;. Algorithm A may put a replica at j at the write, or turn the
n** read of j into a saving-read for 1 < n < m;, or do not put a copy at j at all. We investigate

these cases respectively.

1. j€ X, and j = jo. Then we know from the ¢-LB algorithm that cq - mj;;, < 1. PCZ‘(O') >

1+m; > cq-mj +m; = PCL; (o).

2. j € X, and j # jo. Then we know that cq-m;j, < cq+1. PCZl(a) > 1+cq+mj > cg-mj+m; =

PCtj-LB(U)-

3. A turns the n* read of j into a saving-read. No matter j = jy or not, 1 +cq > ¢4 - m;, and

PC)(0) > (L+ca) - n+1+mj—n>1+ca+mj > PCL p(0).

4. A does not put a copy at j at all. PCZ‘(O') > (14¢q) -m; = PCtj_LB(a).

31

c: j€ RUK. For the 2 - r different processors in R U K, we compare their p-cost with pairs of
processors {i;, k;} for 1 < j < r. By the definition of ¢-LB, we know at the write that §(k;) <0
since k; ¢ T and y < t. Also we see from the definition of ¢-LB that we can arrange the

. . . b k;]
pairs so that &(i;) > &(k;) for all j = 1,...,r. Let PP; = PCY, z(0) + PC,% (o) and PP; =
PCi{ (o) + PCf{ (0). We compare PP; and PP]'- in the following cases.

1. i; = jo, and A does not put a replica at 7;’s local database at all. By d(i;) > d(k;), we ob-

tain cg - mi; — 1> ¢q - (mg; — 1) — 1, hence my; > my, — 1. PPy =1+ m;; + (1 + cq) - myy;
PP]{:(l—I—C)-mij—kl—{—c—{—mkj >mi; +cq- (mg; —1) +1+¢g +my; = PP;.

2. i; = jo, and A turns the n’® read of i; into a saving-read, where (1 < n < m;;). From §(k;) <

0 we obtain 1+cq > ¢g - my;. Pszl—i—mij—i—(l—i—cd)-mkj;Ple-:(1—I—cd)-n+1—|—mij—
n+l4ca+mg =1+mi +ca-n+1+ci+mg; >1+mg; +cqg-mg; +my; = PFj.

3. kj = jo, and A does not put a replica at i;’s local database at all. By d(i;) > 6(k;), we ob-

tain cg-m;; —cq—12> cq-mg; — 1, hence my; > my; +1. PPj =1+ cq+my; + (1 + cq) - myy;

PP]{:(1+cd)-mij+1+mkj > mi; +cq - (mg; +1) + 14+ my, = PP;.

4. kj = jo, and A turns the n" read of i; into a saving-read, where (1 <n < m;;). From 6(k;) <

0 we obtain 1 > ¢g - my; . PPj:1—|—0d+mij+(1+cd)-mkj;PP]'-:(1—I—cd)-n+1—|—m1~j—
n+l4+mg =1+ci-n+mi; +1+my >1+ca+mi; +ca-mg, +my, =PPF;.

5. ij # jo,k;j # jo, and A does not put a replica at i;’s local database at all. From 6(i;) > d(k;),

we obtain cq-m;; —cg—1 > cq-my; —c4—1, hence m;; > my,. PP; = 1+cd+mij+(1+cd)-mkj.
PPJI = (1—|—Cd) T My —I—l—{—cd—l—mkj = 1+cd—|—mij —i—cd-mij +mkj ZPIDJ

6. i; # jo,kj # jo, and A turns the n'® read of i; into a saving-read, where (1 <n < m;;). From

6(kj) < 0 we obtain 1+ ¢4 > cg-my,. PPj = 1+ cg+ my; + (1 + ¢g) - my; PPJ'- =

(I4+ci) n+1+my; —n+1+cg+my =1+cqg-n+mi +1+cqg+mg; > PP
Thus, in this case we also obtain Z;-V:l PCg_LB(O') < E;-Vzl PCY (o).
Summarizing the above two cases, we showed that
N _ N _
STy-ra(I,0) = PCL;p(0) <Y PC%(0) =STa(l,0) O
A.3.5 For Arbitrary Schedules

Lemma 3.3: Suppose that I is the initial allocation scheme. Suppose that ¥ = 1)1 .. . 1k, where 1)y is the

32

first type schedule and ;’s are the second type schedules for 7 = 1,...,k. Suppose that A is an arbitrary
t-available constrained DOM algorithm. Suppose that for i = 1,.. ., k, the allocation scheme at the %" write
of 1 using the algorithm A is I;, and suppose that the A-allocated schedule is lasa (1) = & .. . &, where &;

corresponds to ;. Then

k
STa(I,) = ST(I,&) + Y ST(I;, &) (3.5.1.1)
=1
k
COAL, 1) = CO(I,&) + 3 COL;, &) (3.5.1.2)
i=1
Proof: It follows trivially from the definition of COST in section 2.2. O

Lemma 3.4: Suppose that [is the initial allocation scheme. Suppose that 1 = g1y . .. 1k, where 1 is
the first type schedule and ;’s are the second type schedules for 7 = 1,...,k. Suppose J; is the allocation

scheme at the i write of 1) using the t-LB algorithm. Then

k

STy-p(I,%) = STr-L8(I,%0) + Y ST-18(Ji, ¥5) (3.5.2)
i=1

Proof: Suppose that the t-LB-allocated schedule of v is &y ... &k, where & corresponds to ;. jFrom the
definition of t-L.LB we see that the execution sets of the requests in £; depend on the subschedule ; only and
are independent of the rest of the schedule. Therefore ST;.1.5(I,%0) = ST (&) and STy (Ji,) = ST (&)

fori=1,...,k. Using (3.5.1) we can easily derive (3.5.2). O
A.3.6 The proof of theorem 5

Proof: Suppose that I is the initial allocation scheme. Suppose that 1 is an arbitrary given schedule with
k writes, (k > 0). Then we can rewrite the schedule 1 as ¥ = g1 .. . 1, where 1y is the first type schedule
and 1;’s are the second type schedules for 7 = 1, ..., k. Suppose that A is an arbitrary ¢-available constrained
DOM algorithm. Suppose that the A-allocated schedule is las () = & ... &k, where & corresponds to ;.
Denote the allocation scheme at the i** write using the ¢-LB algorithm by J;. Denote the allocation scheme
at the i'® write using the algorithm A by I;. Let Jy = I.

Suppose that for ¢ = 0,1,...,k, & = lasa, (i), where A; is a DOM algorithm which makes the A;-
allocated schedule of v; to be &; for the given initial allocation scheme J;. ;From lemma 3.1 we derive
STy-1.8(1,%0) < STay(I,10) = ST(I,&). Observe that for the subschedules ; (1 < i < k), the ST-cost
ST(I;,&;) does not depend on the allocation scheme I;, and ST(I;,&;) = ST(J;, &) = STa,(Ji,i). From

lemma 3.2 we obtain ST;-1,B(J;, 1) < STa,(Ji, ;) for i =1,..., k. Thus, we have
STt-LB(Ia w()) < ST(-L&O) and STt-LB(J’iallpi) < ST(I’M&L)

33

The theorem follows immediately from the formula (3.5.1.1), (3.5.2) and the inequalities above. O

A.4 The Proof of Theorem 2 and Theorem 3

Following the proof outlined in A.1, we will show in this section that for any input schedule 1, STpa(I, %) <
28Ty e(I,v), and COpa(I,¥) < 2-c.- STi-g(I,¥). Additionally, we show that if ¢4 > 1 then
COpa(I,v) <cc-STi-LB(I,9).

In formula (3.5.2), we found a way to split the ST-cost STi-15(I,) into a sum of several ST-costs of
special types of subschedules. In this section we will find the lower bounds of each item on the right hand
side of (3.5.2). Meanwhile, we will derive similar formulae (similar to (3.5.2)) for the ST-cost STpa(I,)
and CO-cost COpa(I,7) in lemma 4.1 below. And then we find the upper bounds for every item on the
right hand side of formulae (4.2.1.1) and (4.2.1.2). At last, we compare the sum of the lower bounds and
the sum of the upper bounds to find the competitiveness factor of DA.

Before we proceed, in the next subsection A.4.1 we give some notations which will be used through A.4.
Then in section A.4.2, we give some auxiliary lemmas to estimate the bounds of each piece on the right hand
side of (3.5.2), (4.2.1.1) and (4.2.1.2). Lastly in section A.4.3, we compare the sum of the bounds and show

the theorems 2 and 3.

A.4.1 Notations

We assume that the initial allocation scheme I = F' U {p} is of size t. For an arbitrary given schedule
with k writes, £ > 0, we re-write the schedule as ¥ = g1 ..., where g is zero or more read requests
which come before the first write, and 1; is the i** write w?: followed by zero or more reads which come

before the next write for 1 <7 < k. Let pg = p. For 0 <17 < k, we denote by

a; : the number of different reading processors of v; which are not in F' U {p;};
b; : the number of different reading processors of ;;

s; : the number of read requests in ;.

Then, obviously we have 0 < a; <b; < s; for 0 < < k.
Denote by I; the allocation scheme at wP? using the DA algorithm, and denote by J; the allocation

scheme at wPé using the ¢-LB algorithm.

A.4.2 Bound Estimation

34

Lemma 4.1:

k
STpa(I,4) = STpa(I,40) + Y ST a(li, i) (4.2.1.1)
=1
k
COpa(I,9) = COpa(I,40) + Y COpa(Ii, i) (4.2.1.2)
=1

Proof: Suppose that the D A-allocated schedule of 9 is £yé1 .. . &, where &; corresponds to ;.

Observe that in the COST definition of a request and the definition of DA, the execution set of a
read request in the DA-allocated schedule and its COST depend only on its current status (1 for data
processor, and 2+c.+c4 for non data processor); And the execution set of a write and its COST depend
only on the writing processor itself and the allocation scheme at the write. Therefore, laspa(vo) = &o,
COST(I,&) = COSTpa(I,1g). And for the schedule 1); with the given initial allocation scheme I;, the
DA-allocated schedule laspa(v;) = & for i = 1,...,k, and COST(I;,&;) = COSTpa(I;,4p;). Thus, the
formulae (4.2.1.1) and (4.2.1.2) follows from (3.5.1.1), (3.5.1.2) and (1.1). O

Next, in terms of the notations given in A.4.1, we estimate STpa(I,), COpa(I,1y) in lemma 4.2; find
the lower bound of STi-15(I,10) in lemma 4.3. Then we give a lower bound of ST} 1 5(J;,%;) in lemma
4.4, and an upper bound of COp4(I;,1;) in lemma 4.5. In lemma 4.6 we show that STp4(I;, ;) is at most

twice as much as STy (J;, ;).

Lemma 4.2:

STpa(I,v9) = (14 c¢q) - ag + so (4.2.2.1)
CODA(I, ’L/)()) — C¢c " Qg (4.2.2.2)

Proof: There are ag different reading processors which are not in the initial allocation scheme I, and the
first read from each of these processors in 1y will cost (¢, + ¢4 + 1) more than the other reads. c. counts
for the cost of submitting the read request to a data processor; ¢4 counts for the cost of transmitting the
object; and 1 counts for the cost of the saving I/O operation, namely, outputting the object to the local
database. Each read request costs 1 for inputting the object from a local database. Therefore, the total the

total ST-cost is (1 4 ¢4) - ag + sp and the CO-cost is ¢, - ayp. O

Lemma 4.3:

STy-rB(I,%0) > ao - ca + 5o (4.2.3)

Proof: The object has to be transmitted to the a¢ non data processors for the read requests, hence the

object transmitting cost is at least ag - cg. Each read request has to be satisfied by inputting the object from

35

a local database, hence the I/O cost is at least sg. The lemma follows. O

Lemma 4.4: Fori=1,...,k;
STy-1.(Jis9i) > t+a;-cqg+s; (4.2.4)

Proof: The I/O cost of the i'® write is ¢, and the I/O cost of the s; reads is at least s;. Since there are at
least a; different reading processors which are not the writing processor p;, the object transmitting cost is

at least a; - ¢4. The lemma, follows. O

Lemma 4.5: Fori=1,...,k;
COpa(Liy i) < (14 ai—1 + b;) - cc (4.2.5)

Proof: At the write wPi, there are at most (14a;_1) data processors which are not in the execution set, 1
counts for p; 1 and a; 1 counts for the processors which belong to I; due to a read. Thus, the CO-cost of
the ‘invalidating’ message is at most (1 + a;_1) - c..

Besides, there are b; different reading processors in 1);, these processors either have a replica after the
write (hence involve no control message cost), or keep a replica after their first reads (with a single control
message cost ¢.). Therefore, the total control message cost of the reads are at most b; - c..

Thus, the total control message cost of 1; with the initial allocation scheme I; using the DA algorithm

is at most (1 + a;—1 + b;) - cc. O

Lemma 4.6: Fori=1,...,k;
STpa(Li, ;) <2-STi-1e(J;,¢i) (4.2.6)

Proof : Denote the set of reading processors of 1; by B. Then |B| = b;. Suppose that T is the execution set
of wPi using the ¢-LB algorithm, and Y is the set of processors j which satisfy §(j) > 0 at wPi. Let y = |Y|.
Denote by m; the number of reads issued from processor j in 9;. Then, }>;cpm; = s;.

To derive the formula (4.2.6), we analyze the STpa(l;, 1) and STi-rp(J;, ;) in the following cases,

namely, [) y >tand p; € Y;I)y>tand p; ¢Y;) y<tand p; €Y;and IV) y <tand p; €Y.

Casel: y>tandp, €Y. Thenp;, e T CY,t<y<b;.

Let’s consider the lower bound of ST}-1,5(J;, ;) first. The ST-cost of the write is ¢t + (¢ — 1) - ¢4; For
the processors j € T, the total ST-cost of the reads from j is m; for the local I/O; For the processors

j € Y/T, the total ST-cost of the reads from j is 1 4+ cq + m;, where ¢4 is the cost of transmitting the

36

object form a processor in F' to j for the first read of j, 1 is the cost of outputting the object to the
local database of j for the saving-read (the first read of j will be turned into a saving-read), m; is the
inputting I/O cost for retrieving the object; For the processors j € B/T, j will not have a replica of
the object at all, the total ST-cost of the reads form j is (1 + ¢4) - m; since every read will be a remote
read. Therefore,

STy-re(Jis¥i) =t+({t—1)-cqg+ ij+ Z 1+ci+my)+ Z (1+cq) - mj
JET JEY/T jJEBJY

=t+(t—1)-cat(+ca)-(y—t)+D mj+ Y ca-my
jeB jEBJY

>mi>) Y+ W —1)-cat+sitei-(bi—y)=y+sitea(bi—1)

Now consider STp4(I;,1;). The write costs t + (t — 1) - ¢q; The reads from p; are all local reads, hence
costs mp,; The reads from other processors j € B/{p;} costs at most 1 + ¢4 + m;. Therefore,
STpa(liypi) <t+(t—1)-ca+mp, + > (1+ca+my) =
j€B/{pi}
t+(t—1)-ca+ > mi+bi—1)-(I+cg) =t+si+b—1+(t—1+b—1)cq
jeB

Let Ay =y+s;, Ao =b;—1,Bi=t+s;+b;—1,and B =t—1+b; — 1. Since t <y < b; < 55, we
derive B1 < 2- A1 and B2 < 2- AQ. Thus,

STpa(li, i) <B1+Ba-cg <2 (A1 + Az cq) <2 STy (i, i)

CaseIl: y>tand p; €Y. Thenp; ¢ T, T CY,t <y <b; <s;, and similarily (to case I) we get

STt-LB(JZ',l/)i) :t+t-cd+zm]’+ Z (1+Cd+mj)+ Z (1+Cd) My =
JET JEY)T jEB]Y

y+y-cd+2mj+ Z ca-m;j>y+y-cqg+si+eq-(bi—y)=y+si+cqg-bi
jeB jEBJY

STpa(Tish) <t + (t—1)-ca+ Y (1+ca+my) =
JjE€EB
t+(t—1)-cg+si+(1+cq) -bi=t+si+bi+cg-(t—14+b)

We can easily derive t + s; + b; < 2-(y+s;), and t — 1+ b; < 2-b; in this case. Thus, we derive the

formula (4.2.6) from the two bounds obtained.

37

Case IIT : y<tandp; €Y. Then Y C T. We analyze two subcases 1) b; > ¢; and 2) b; < ¢t. In each case

we follow the same analysis as we did in the previous cases to find the lower bound of ST}-15(J;, ;)

and the upper bound of STpa(I;,1;), and then we compare the bounds.

1. b;>t. ThenT C B and

STr-B(Jiyhi) =t+ (t—1)-ca+ Y _mi+ Y (14ca)-m;
jer j€B/T

>t+(t—1)-cg+siteqg-(bj—t)=t+s;+(b;—1)-¢q

STpa(Ii,ihs) <t+(E—1)-cat+mp, + > (1+cq+m;)
J€B/{pi}

=14+ai1) - cct+t+{t—1)-cg+si+(b;—1)-(cc+1+4cq) =

t4+si+bi—1+E—14+b—1)-cqg <2-STi-1B(Ji ;)

2. b;<t. Then BCT, and

STyrp(Jiypi) =t+ @t —1)-ca+ > mj=t+si+(t—1)-cq
jeB

STpa(Iiyhi) <t+(t—1)-cg+mp, + > (1+cq+my)
JjeB/{p:i}
=t+3i+bi—1+(t—1+bi—1)-Cd§2-STt_LB(JZ‘,1/)Z')

Thus, (4.2.6) is true in this case.

Case IV: y<tandp; €Y. Then Y C T. We analyze three subcases, namely, 1) b; > ¢; 2) 0 < b; < ¢;

and 3) b; = 0. In each of these cases, we find the lower bound of ST}-15(J;, ;) and upper bound of

STpa(l;, 1), and then compare the bounds.

1. b;>t. ThenY CT C B, and

Sﬂ_LB(Ji,’(/)Z’)Zt—f—t-Cd-i-ij—f- Z (1+cd)-mj:t+t-cd+si+cd- Z m;
jJET jEB/T JEB/T

>t+sit+t-cgteqg-(bi—t)=t+s +cqg-b;
STpa(Liyhi) <t+(t—1)-cat Y (1+cg+my) =
jEB
t+s;+bi+(t—1+b) ca <2 ST-1p(Ji, i)

38

2. 0<b;<t. Then B CT, and

STirp(Jihi) =t +(E—1)-cat Y mj=t+s+({t-1) c
jEB
STpa(Liyihi) <t+(t—1)-ca+ Y (1+cg+my) =
jeB
t+si+bi+{t—1+b) cg <2:STpr(Ji, i)

3. b, =0. Then B =, and
STi-15(Jishi) = STpa(Liyhi) =t + (t — 1) - ca
Obviously, (4.2.6) follows in this case. O

A.4.3 Bounds Comparison

In this section, we show firstly that with the given initial allocation scheme I the ST-cost of D A-allocated
schedule of an arbitrary schedule 1) is at most twice as much as the optimum ST-cost (i.e., the ST-cost of
the corresponding t-LB-allocated schedule). Secondly, we show that the CO-cost of D A-allocated schedule
of an arbitrary schedule is at most 2 - ¢, (or ¢ if ¢g > 1) times as much as the optimum ST-cost. Then we

use the arguments in A.1 to prove the theorems.

Lemma 4.7:
STDA(Ia ¢) <2. ST;S—LB(Ia Q,b) (431)

Proof: From (4.2.2.1) we see that STpa(I,%0) = ag + ¢4 - ap + So- Since ag < sp, from (4.2.3) we can easily
conclude STpa(I,v0) < 2-STi-rp(I,1p). ;From this inequality and (4.2.6) we see that

k k
STpa(I,%0) + Y STpa(Ji,) < 2- STr-1B(I,40) +2- Y STr-18(Ji, i)

i=1 i=1
From (4.2.1.1), (3.5.2) and the inequality just obtained, we derive (4.3.1). O
Proof of Theorem 2: Sincet > 1and a; < b; < s;, we derive 1+a;+b; < 2:(1+s;) < 2-(t+ai-catsi) <(s2.4)

2 S8T;-1.B(Ji, ;). Therefore, for i =1,...,k,
1+a;+b; <2 STipp(J;, i) (4.3.2)

By summing the inequality (4.2.5) up from 7 = 1 to ¢ = k, we obtain

k k

k
> COpalliyihi) <ce- Y (L4ai1+b) <cc-ag+ce- D (1+a;+b)
i=1 =1 i=1

39

Thus, from (4.3.2) we obtain

k k
> COpa(li,hi) < cc-ao+2-cc- Y ST (Ji, ;)

=1 =1

By adding (4.2.2.2) to the inequality above, we get

k k
COpa(I,p0) + > COpa(li,h) <2-ce-ag+2-cc- Yy STr-B(Ji, i)
i=1 =1

k

<(23) 2 STrrp(I,) + 2 cc- Y STr-1.8(Ji, i)
i=1

Thus, by (4.2.1.2) and (3.5.2) we conclude
COpa(I,9) <2-c.- STi-LB(1,9) (4.3.3)
By adding (4.3.1) to this inequality, from (1.1) we derive
COSTpA(L,) < (2+2-¢) - STerp(l,¥) <o) (2+2-¢.) - COSTopr(L,) O
Proof of Theorem 3: Since ¢t > 1, ¢ > 1 and s; > b;, from (4.2.4) we derive that for i = 1,...,k,
STi-r(Ji, i) > 1+a; +b; (4.3.4)

2-a9<ag-cqg+ 8o (4.3.5)

Now we sum the inequality (4.2.5) up from i = 1 to 4 = k. Then we obtain

k k k
> COpalTisthi) <ce- Y (1+ai1+b) <ccrag+ecer » (L+a;+b)

i=1 i=1 i=1

Thus from (4.3.4) we obtain

k k
> COpalli,hi) < ce-ao+ce- Y STr-ra(Ji, %)

=1 i=1

By adding (4.2.2.2) to the inequality above, we get

k k
COpa(I,4ho) + > COpa(Tiythi) <2-ccrap+ccr Y STirp(Ji, 1)

k

<(1.3.5) Ce - (a0 - ca+ 50) + cc - Y STy-r(Ji, 1s)
i=1

k
<@23) ¢ - STr-LB(I,%0) + cc - Y STr-1B(Ji, i)
i=1

40

;From (4.2.1.2) and (3.5.2) and the inequality just obtained, we conclude
CODA(I, Q,b) S Ce " STt_LB(I, Q,b) (436)
By adding (4.3.1) to (4.3.6), from (1.1) we derive

COSTpa(I,9) < (2+cc) - ST-r.B(I1, %) <(1.9) 2 +¢) - COSTopr(I,%) O

41

